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A classic result in theoretical ecology states that an increase in the proportion of cooperative interactions in
unstructured ecological communities leads to a loss of stability to external perturbations. However, the fate and
composition of the species that constitute an unstable ecological community following such perturbations
remains relatively unexplored. Here, we used an individual-based model to study the population dynamics of
unstructured communities following external perturbations to species abundances. We found that while
increasing the number of cooperative interactions does indeed increase the probability that a community will
experience an extinction following a perturbation, the entire community is rarely wiped out following a
perturbation. Instead, only a subset of the ecological community is driven to extinction, and the species that
become extinct are more likely to be those engaged in a greater number of competitive interactions. Thus, the
resultant community formed after a perturbation has a higher proportion of cooperative interactions than the
original community. We showed that this result could be explained by studying the dynamics of the species
engaged in the highest number of competitive interactions: After an external perturbation, those species that
compete with such a ‘top competitor’ are more likely to become extinct than expected by chance alone,
whereas those that are engaged in cooperative interactions with such a species are less likely to become extinct
than expected by chance alone. Our results provide a potential explanation for the ubiquity of cooperative
interactions in nature despite the known negative effects of cooperation on community stability.

Keywords. Coexistence; community ecology; cooperation; ecological stability; individual-based model;
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1. Introduction

One of the central questions in community ecology
asks whether observed patterns of interspecific inter-
actions can be explained using ecological principles
(Sherratt and Wilkinson 2009; Sutherland et al. 2013;
Dobson et al. 2020). An important notion in this regard
is the ‘stability’ of a community, i.e., its ability to
withstand external disturbances, and how it is affected
by interactions between the constituent species (Sher-

ratt and Wilkinson 2009). While the effects of inter-
action patterns on community stability have been
extensively studied in the literature (May 1973; Alle-
sina and Tang 2012; Mougi and Kondoh 2012, 2016;
Coyte et al. 2015; Mougi 2016a, b; Serván et al. 2018;
Qian and Akçay 2020; Stone 2020), the question of
what happens to unstable communities following a
perturbation has received much lesser attention. Fur-
thermore, ecological literature has used a plethora of
stability concepts (Grimm and Wissel 1997). While
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stability in deterministic systems can reasonably be
construed as the ability of a population to return to its
exact previous configuration following a perturbation
(‘resilience’ sensu Grimm and Wissel 1997), this may
be too restrictive of a criterion for finite, stochastic
communities. A more natural stability criterion for
stochastic systems is ‘persistence’, i.e., the ability of a
community to retain all its species following a pertur-
bation (Grimm and Wissel 1997; Jansen and Sigmund
1998). In this study, we asked how stability in the sense
of persistence is affected by the amount of mutualism
present in a community. Furthermore, if a community
was unstable in the persistence sense, we asked whe-
ther all the species in a community go extinct after a
perturbation, and if not, whether the composition of the
community in terms of the interaction patterns is
changed following species loss.
The interactions between two species in a community

can be broadly classified into three types: competitive,
cooperative, and exploitative (Allesina and Tang 2012).
When two competing species interact, both are adversely
affected and perform worse than if the other were absent.
This could be due to several reasons, including compe-
tition for shared resources or the secretion of toxins that
harm members of the other species. Contrastingly,
cooperative species help each other grow, for example, by
providing each other with essential resources. Finally,
exploitation refers to the phenomenon where one of the
two interacting species benefits from the interaction,
whereas the other is harmed. Such interaction patterns
would biologically correspond to phenomena such as
predation or parasitism, in which individuals of one
species actively consume whole or part of individuals of
the other species (Allesina and Tang 2012).
When modeling all species interactions in a

community through pairwise interactions (as in Lotka–
Volterra type models), interspecific effects can be col-
lected in a so-called ‘interaction matrix’. The i-jth entry
of the interaction matrix quantifies the effect of species
j on the growth rate of species i. This, of course, need
not be exclusive to pairwise interactions alone, as
higher-order interactions among multiple (greater than
two) species may be broken down into multiple pair-
wise interactions. Diagonal entries of such a matrix
capture the strength of intraspecific competition. If we
assume, as is often done (e.g., May 1973; Allesina and
Tang 2012; Coyte et al. 2015), that interactions within
the community are completely random (unstructured),
this matrix can be entirely characterized by measuring
the fraction of cooperative (pm), competitive (pc), and
exploitative (pe) interactions present. In such a sce-
nario, the question of how community interaction

patterns affect stability reduces to how pm, pc, and pe
affect stability.
Previous theoretical studies in the infinite species

richness limit have shown that if interactions are mostly
pairwise and linear (i.e., modeled by Lotka–Volterra-like
dynamics), then for a given magnitude of intraspecific
competition, unstructured communities with a greater
fraction of cooperative interactions (higher pm) are less
likely to be stable (Allesina and Tang 2012; Coyte et al.
2015). Here, the concept of stability used is ‘resilience’
(Grimm and Wissel 1997), i.e., whether a system can
return to the same initial configuration of species abun-
dances following an external perturbation. These results
were extended to a system with finite (but large) species
richness using a computational individual-based model
(IBM) (Coyte et al. 2015). The latter study also used a
different stability concept called ‘persistence’ (Grimm and
Wissel 1997), i.e., the ability of a community to retain all
its species following a perturbation. Coyte et al. (2015)
showed that communities with higher pm are more likely
to lose species to extinction following random perturba-
tions to their abundances, and thus that mutualism is also
destabilizing when persistence is used as a stability con-
cept. Since environmental conditions are seldom constant,
perturbations are ubiquitous in nature. If communities
with a large fraction of cooperative interactions are
unstable, and unstable communities are more likely to
experience species loss, cooperative communities would
be less likely to be found in nature (but see Ringel et al.
1996; Holland et al. 2002; Bastolla et al. 2009; Lever
et al. 2020; Bascompte and Scheffer 2023 for how these
expectations are altered by community structure or den-
sity dependence). However, this insight is difficult to
reconcile with the empirical observation that many
communities with a reasonable number of positive
interactions (cooperation and commensalism) are abun-
dant in ecological communities (Kehe et al. 2021), with
some communities almost solely comprising cooperative
interactions (Machado et al. 2021).
Another issue in terms of community composition

relates to the relative strengths of the intraspecific and
interspecific interactions. Theoretical studies (May 1973;
Allesina and Tang 2012; Barabás et al. 2016, 2017)
suggest that species-rich, randomly assembled commu-
nities are overwhelmingly likely to be unstable (in terms
of resilience) unless intraspecific competition is much
stronger than interspecific competition. This insight is
congruent with the observation that the interaction net-
works of large microbial communities in nature often
have low connectivity (Yonatan et al. 2022). If many
species-rich communities are likely to be unstable, several
questions arise related to their fate. For example, if an
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external perturbation causes some extinctions in a ran-
domly assembled community, do all species go extinct? If
not, then is the identity of the species that go extinct
random, or determined by their interactions with other
members of the community?
Here, we studied the effects of interspecific interac-

tions on both community persistence as well as resul-
tant community composition in the face of external
perturbations. We employed a stochastic IBM in
which we supplied rules at the species level and let
community-level patterns emerge spontaneously. Our
IBM followed Lotka–Volterra growth patterns except
for imposing an additional limit on species numbers
(due to limited resources). This limit allowed us to
relax the unrealistic assumption of infinite unbounded
growth rates associated with cooperative interactions in
purely analytic Lotka–Volterra models (Allesina and
Tang 2012) to study the effects of cooperation in more
realistic communities. While we focus on unstructured
communities for the remainder of this article, our
approach is general and can easily be extended to
analyze communities with arbitrary interaction struc-
tures. Since our system was inherently stochastic, we
studied stability in terms of persistence, asking whether
the probability of losing a species to extinction fol-
lowing a perturbation depends on community structure
(Coyte et al. 2015), and if so, whether the species lost
are random with respect to the interactions they are
engaged in. Our primary results indicate that pertur-
bations to unstable communities do not necessarily
result in all species of the community going extinct.
Instead, we find that perturbations often result in the
extinction of only a few species and the formation of a
new ‘sub-community’ with fewer species. We observed
that while communities with a greater fraction of
cooperative interactions are more likely to experience
extinctions of some species, the resultant community
formed after the extinctions was found to have a greater
fraction of cooperative interactions than the original
community, implying that species that engage in
competitive interactions are more likely to be selec-
tively removed. We then studied the community
dynamics to answer why species participating in
competitive interactions are more likely to go extinct.

2. Methods

2.1 Model overview

We present here a brief overview of the model, with all
the relevant details in the following subsections.

This study used an IBM based on a previous
framework (Coyte et al. 2015). In this framework,
every species interacts with every other species either
cooperatively, competitively, or exploitatively. We
begin with a community consisting of S species.
Henceforth, we use either S = 7 or S = 15. Let pm, pc,
and pe denote the fraction of total cooperative, com-
petitive, and exploitative interactions in the community,
respectively. Following usual conventions (May 1973;
Allesina and Tang 2012; Coyte et al. 2015; Serván
et al. 2018), we assume that all species have the same
level of intraspecific competition, denoted by -s. To
study the effects of species interactions on persistence,
we initialized a community with a specified (pm, pc, pe)
at equilibrium determined from Lotka–Volterra
dynamics. To do this, we generated an interaction
matrix such that a randomly drawn interspecific inter-
action will be of cooperation with probability pm,
competition with probability pc, and exploitation with
probability pe. Interaction strengths were drawn from a
gamma distribution. We chose a gamma distribution
arbitrarily, since previous work has shown that only the
first two moments of the distribution affect the results,
while the precise choice of distribution (gamma, half-
normal, etc.) is irrelevant (Coyte et al. 2015). We then
initialized the community with a random initial con-
figuration of species abundances, and adjusted the
growth rates of each species such that this initial con-
figuration was a fixed point of the generalized Lotka–
Volterra equations. We then perturbed this community
by killing off a fixed, relatively small number of ran-
domly chosen individuals (for details, see below). The
strength of this perturbation was sufficiently small such
that no species went extinct due to the perturbation
alone. Thus, any subsequent species extinctions would
be driven by the dynamics of biotic interactions within
the community following the perturbation. We
observed how species abundances varied following
such a perturbation by allowing the community to
stabilize to a new steady state according to the gener-
alized Lotka–Volterra equations.
Figure 1 provides a schematic description of our

model. To avoid the possibility of observing only the
effects of specific network topologies, we randomized
individual interactions between species within a com-
munity across replicates such that only the effects of
the proportion of each interaction type (as opposed to
the specific network topology) were kept constant.
Since an extinction in a community reduces the species
richness of the community and thus the number of
interactions, we defined a new interaction matrix fol-
lowing extinctions, where the interaction effects from
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Figure 1. A schematic description of our IBM. The model was initialized with a set of parameters and a time counter set at
t = 0. In this diagram, t is the number of time-steps in the model (not to be confused with the actual time for which the
dynamics are simulated; the two differ due to adaptive rescaling of the growth rates; section 2). The model was allowed to run
for a total of T time-steps. The community follows Lotka–Volterra dynamics, except when tp time-steps have elapsed, at
which point the community experiences an external perturbation that kills off some individuals of each species. If at any time
the Lotka–Volterra dynamics predict that the total population size N ¼

P
iNi of the community exceeds a maximum allowed

size, a random fraction of the community is eliminated until the total size is below the maximum allowed size. Refer to
section 2 for details of the model and the parameter values chosen (section 2; table 1).
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the extinct species have been set to 0. The effects of
any potential extinctions on community composition
can then be studied by comparing the species richness
and the interaction matrix at the beginning and the end
of the simulation. For simplicity, we present results for
pe = 0 (i.e., communities where all interactions are
cooperative or competitive) in section 3. Results
for communities containing exploitative interactions
(pe[0) are presented in the supplementary figures 1–7.

2.2 Initialization and static parameters

The world of the simulation is a 50 9 50 2D square
lattice with periodic boundary conditions. Each lattice site
is occupied by, at most, a single individual. Every indi-
vidual interacts with every other individual, and thus
interactions are non-local. An individual can only repro-
duce if an empty space is adjacent to the focal individual.
The community is initialized with S different species, all
interacting with each other (this corresponds to setting the
connectivity C = 1 in the Coyte et al. (2015) IBM). The
total population size was capped at 90% lattice occupancy
at any given time. Thus, our simulations could have a
maximum of 2250 individuals coexisting at a given time
in a given simulation run. An obvious drawback of this
design is a limit on how many species we can include in
our community. However, highly species-rich communi-
ties require each species to have high intraspecific com-
petition, at times orders of magnitude greater than other
interactions, to ensure stability of the community as a
whole in either terms of resilience or persistence (May
1973; Allesina and Tang 2012; Coyte et al. 2015; Barabás
et al. 2016, 2017; Serván et al. 2018; Bascompte and
Scheffer 2023). Species-rich communities in which
interspecific interactions are of the same order as
intraspecific interactions are therefore inherently unstable,
and studying the effects of the distribution of interaction
patterns (cooperation, competition, and exploitation) in
such communities is thus of limited biological use.

2.3 Interactions and species abundance dynamics

Species abundance dynamics are assumed to follow the
generalized Lotka–Volterra equation, which, in matrix
form, reads as follows:

dx

dt
¼ DðxÞðr þ AxÞ ð1Þ

For a community with S species, equation 1 is an
S-dimensional equation. Here, x is an S-dimensional

vector of population densities, r is an S-dimensional
vector of intrinsic growth rates, D(x) denotes an
S 9 S diagonal matrix with x on the diagonal, and the
interaction matrix A is an S 9 S matrix that captures
the effects of interspecific interactions. For our
simulations, we used either S = 7 or S = 15. The i-jth
entry of the matrix A, which we denote by aij,
describes the effect of species j on the growth rate of
species i. Diagonal entries of this matrix are -s,
which is a parameter that controls the strength of
intraspecific competition. For off-diagonal entries,
the magnitude of aij was drawn from a gamma dis-
tribution with a mean of 0.25 and a variance of 0.01.
Since the probability of drawing a value that is
exactly 0 from such a continuous distribution is
extremely small, the connectance of our communities
was very close to 1 (i.e., every species interacts with
every other species) across all simulations. Since we
wished to model an unstructured community, the
signs of aij were determined randomly such that
species i and j have a cooperative interaction (?/?)
with probability pm, a competitive interaction (-/-)
with probability pc, and an exploitative interaction
(?/-) with probability (1- pm - pc). In the case of
an exploitative interaction, each species is equally
likely to be the one that is benefited. For all
simulations in section 3, we set pm and pc such that
pm?pc = 1. Thus, there were no exploitative inter-
actions in the community for the results presented
in section 3. Since we filled the interaction matrix
according to probabilistic rules, pm, pc, and pe are not
the realized values in any given simulation but are
the parameters used to determine the probability of
an interaction being cooperative, competitive, or
exploitative. Note that since the sign of each entry of
the matrix was independently drawn, a single species
may be engaged in multiple types of interactions.
When initializing the system, each species was
assigned a random population density, and the
growth vector r was chosen such that the population
densities at initialization were a fixed point for the
Lotka–Volterra dynamics. Thus, given a realized
interaction matrix A and a randomly initialized
population vector x0, we set the growth rate to

r ¼ �Ax0

This ensures that the right-hand side of equation 1
becomes 0 at the initial community configuration x0,
and the community thus begins at equilibrium.
Since species growth dynamics are modeled entirely

by equation 1, spatial structure does not affect the
interaction dynamics in our model. Instead, the lattice
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serves to impose a population limit and prevent
unbounded growth.
This constraint is meant to reflect the fact that in

ecological communities, resources can be limited,
preventing unbounded growth, without interaction
potential being limited.

2.4 Perturbation and extinctions

Following a previous study (Coyte et al. 2015), we
implemented a perturbation five time-steps into the
simulation by eliminating 10% of the population of
each species. The individuals eliminated were chosen

Figure 2. Fraction of extant species left after perturbation. In all simulations, interaction strengths were drawn from a
gamma distribution such that the mean is 0.25 and the variance is 0.01. (A) For a given strength of intraspecific competition
(here, s = 1.05), the mean fraction of extant species reduces with increasing pm but takes non-zero values for most values of
pm: The fraction of extant species is higher for a smaller community (here, 7 species) compared with a larger community
(here, 15 species). Each point is the mean of 100 realizations, and error bars represent 95% CIs. (B) The mean fraction of
extant species (averaged over 100 realizations) increases with strength of intraspecific competition across different values of
pm for a community of 15 species. (C) The number of extant species present in an unstable community (S = 15, pm = 0.5,
s = 1.05) falls after one perturbation, but does not change following subsequent perturbations (Wilcoxon rank-sum test,
n = 100, W = 4892.5, p[ 0.1).
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at random. We chose a value of 10% because we
wished to investigate the impact of perturbations that
affect the population dynamics (biologically corre-
sponding to relatively minor environmental fluctua-
tions) but are not so large as to introduce bottleneck
effects or cause a species to become extinct due to the
perturbation alone. If larger perturbation strengths are
used, stochastic effects may dominate the dynamics.
The simulation was then allowed to run until T = 750
time-steps passed. For consecutive perturbations, as
depicted in figure 2C, we executed a secondary per-
turbation at 750 time-steps and allowed the system to
run for an additional 750 time-steps (i.e., for a total
time of T = 1500). These particular time-steps were
chosen as the population attained an equilibrium well
before this time in sample simulations. If, at any
point in the simulation, the growth rates predicted a
population size that exceeded the maximum popu-
lation size allowed by the simulation, a random
fraction of the population was killed off such that the
new population size was below the maximum
allowed population size. Thus, unlike in classic
analytical Lotka–Volterra models of cooperation
(Allesina and Tang 2012; Coyte et al. 2015), the
species in our IBM cannot exhibit infinite unbounded
growth due to limited space.

2.5 Computing realized growth rates following
a perturbation and an adaptive time-step

Following a perturbation, the community is no longer
at the density x0 and is thus no longer at equilibrium
for the Lotka–Volterra dynamics defined by equa-
tion 1. While computing the resultant population
dynamics, we rescaled the growth rates to allow for an
adaptive time-step using a method introduced in a
previous study (Coyte et al. 2015). We first defined a
parameter gcap, which is the maximum magnitude of
growth rate allowed in a single time-step. We then
rescaled the realized growth rate of every species to be
in [-gcap, gcap]. This rescaling lets us naturally define
an adaptive time-step that enables the model to sim-
ulate long times if differences in growth rates between
species are large, while also allowing us to determine
the fine-scale dynamics if the differences in growth
rates is small (Coyte et al. 2015). More explicitly, our
model can be described as follows: At time s, we first
compute the realized per-capita growth rate of species
i, gi, as

gi sð Þ ¼ ri þ Axi sð Þ � diag Að Þ

The term �diagðAÞ simply serves to remove the effect
of an individual on itself. We then find the maximum
growth rate (in absolute value), gmaxðsÞ ¼ maxijgiðsÞj,
and rescale the growth rate of each species as

gi sð Þ ¼ giðsÞ
gmaxðsÞ

gcap

We then advance time according to the formula

s0 ¼ sþ 1

gmax

The population density of species i at time s0 is then
given by

xi s
0ð Þ ¼ xi sð Þgi sð Þ

¼ gcap
gmax sð Þ xi sð Þ ri þ Axi sð Þ � diag Að Þ½ � ð2Þ

This constitutes one ‘time-step’ of the model. Thus,
although the model runs for only 750 (or 1500) time-
steps, the true ‘in world’ time is considerably greater
than 750 (or 1500), since time is rescaled dynamically
at every step. The extent of the difference between
time-steps of the model and simulated time within the
model is controlled both by the parameter gcap and by
the difference between the realized growth rates gi of
the different species. Since the right-hand side of
equation 2 is just a rescaled version of the right-hand
side of equation 1, introducing adaptive time-steps in
this manner only rescales time and does not otherwise
affect the behavior of the system (Coyte et al. 2015).
Such adaptive time-stepping greatly reduces the com-
putational resources required to simulate the model.

2.6 Computing interaction structures following
extinctions

We did not modify the interaction matrix A in any way
following species interactions since extinctions already
affect the growth dynamics in equation 1 through the
density vector x. At the end of the simulation, we
checked which species were extant (i.e., have density
xj [ 0) and computed the fraction of cooperative
interactions (pm) and competitive interactions (pc) in
the new community formed solely of extant species.
These new fractions let us examine whether extinctions
are non-random with respect to initial interactions (i.e.,
whether species engaged in more cooperative interac-
tions are more likely or less likely to go extinct than
those engaged in more competitive interactions).
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2.7 Software and statistical analysis

Since our simulations are stochastic, we ran 100 inde-
pendent realizations of the simulation for any given
combination of parameter values to obtain an estimate of
expected (average) behavior. We varied pm from 0 to 1
(this automatically varies pc from 1 to 0) and s from 0.15
to 1.65. All parameters that were held constant for all
simulations run in this study are summarized in table 1.
All simulations were run in Python 3.6. Plots were made
using either Python 3.11.4 (packages numpy 1.24.2,
pandas 1.5.3, matplotlib 3.7.1, and seaborn 0.12.2) or R
4.2.2 (packages dplyr 1.1.1, rstatix 0.7.2, ggplot2 3.4.1,
and ggpubgr 0.6.0). Statistical tests were run in R 4.2.2.
For effect size calculations, we used the wilcox_effsize
function from the rstatix package. All code and data
presented in this manuscript are accessible at https://
github.com/ThePandalorian/Bhat_Nag_Dey_2025_LV_
comms.

3. Results

To briefly recapitulate our modeling approach: we used
an IBM to study the stability and dynamics of finite-
species communities after perturbations. We considered
communities with 7 or 15 species interacting with
every other species through cooperation or competi-
tion. Our model also included intraspecific competi-
tion, i.e., when members of each species compete with
conspecifics. Further, since the total amount of space is
limited, our IBM cannot exhibit infinite unbounded
growth, a well-known unrealistic prediction of

analytical Lotka–Volterra models of cooperation
(Allesina and Tang 2012; Coyte et al. 2015). We ini-
tiated communities in equilibrium and simulated a
perturbation, where a fraction of all community indi-
viduals is killed off randomly. We then studied the
stability and composition of the post-perturbation
community. If the original community were stable, the
species composition would remain unchanged after
perturbation.

3.1 Unstable communities do not usually lose all
their species following a perturbation

In our study, we perturbed the communities in such a
way that the strength of the perturbation in itself does
not lead to species extinctions. In such a scenario, the
community does not lose its entire assemblage of
species to extinctions but, instead, forms a smaller
community with fewer species (figure 2A). A recent
study has also independently reported the same result
using numerical simulations of Lotka–Volterra
dynamics (Rohr et al. 2025). We also found that, fol-
lowing a perturbation, more species-rich communities
(figure 2A; compare the red and yellow curves) and
communities with a greater fraction of cooperative
interactions (i.e., higher pm) (figure 2A and B) tended
to lose more species, recapitulating classic results
based on resilience stability (May 1973; Allesina and
Tang 2012). Thus, we can say that mutualism is
destabilizing in our work, since a community loses
more species as pm increases. However, the entire
community went extinct only when the fraction of
cooperative species was very high (figure 2B). In line
with previous studies based on resilience, we found
that increasing intraspecific competition promoted
coexistence – all else being equal, communities with
higher intraspecific competition tended to retain a
higher fraction of species following a perturbation
(figure 2B). Note that this result also indicates that
communities with a large fraction of cooperative
interactions may still be stable if intraspecific compe-
tition is sufficiently high (Barabás et al. 2017;
Bascompte and Scheffer 2023). Following these
extinctions, the resultant community is stable, and a
second perturbation did not lead to any major changes
in the community composition. This is demonstrated
by the fact that the number of species in the community
following one perturbation was not significantly dif-
ferent from that of species following two perturbations
(figure 2C; Wilcoxon rank-sum test, W = 5193,
p = 0.63). Broadly the same results hold for

Table 1. Parameters that were held constant across all
simulation runs

Fixed parameter Value

Total time of simulation (T) 750 (1500 for two
perturbations)

Time of perturbation (tp) 5
Proportion of each species killed in
a perturbation

10%

Side length of lattice (controls total
population size)

50

Maximum allowed occupancy (% of
lattice that can be occupied)

90%

Interaction strength mean 0.25
Interaction strength variance 0.01
Maximum allowed growth rate in
one time step (gcap)

0.25

The interaction strengths were drawn from a gamma distribution
with the specified mean and variance.
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communities with exploitation (supplementary fig-
ures 1 and 2). To assess how the community compo-
sition changes after a fraction of the species is lost, we
determined whether the proportion of interactions of
each type in the post-perturbation community signifi-
cantly differed from that of the original community.

3.2 Competitive interactions are selectively lost
following a perturbation in unstable communities

If all species have equal probabilities of going extinct
after a perturbation, then, on average, we expect the
proportion of competitive (or cooperative) interactions
in our randomly assembled communities to remain
unchanged by the end of the simulation. Our results
reveal that this is not the case. The stable communities
formed after species loss had a larger fraction of
cooperative interactions and a lower fraction of com-
petitive interactions than the initial starting communi-
ties (figure 3A). In other words, if some species go
extinct in a community following a perturbation, the
overall amount of competition in the community,
measured in terms of the fraction of competitive
interactions, tends to reduce. In communities without
exploitation, this implies that despite cooperation
having been associated with decreased stability in
earlier studies, the fraction of surviving cooperative
interactions would be higher than in the original
community prior to perturbation. Indeed, our results
indicate that communities found after perturbation have
a significantly higher fraction of cooperative interac-
tions, as measured by the Wilcoxon rank-sum test
(figure 3A; W = 1737, p \ 0.001), and effect size
calculations indicate that this bias has a large effect
(Wilcoxon effect size, r = 0.564). This broad result is
valid for a large array of pm (figure 3B and C) and
intraspecific competition (figure 3C) values, suggesting
that the result is robust to variation in initial community
composition. Thus, even though ‘more cooperative
communities’ (i.e., communities with a greater fraction
of cooperative interactions between species) are less
stable, perturbation-driven extinctions in these com-
munities do not lead to communities with a lower
proportion of cooperative interactions. However, at
high pm and high intraspecific competition, the trend is
reversed and, albeit for a small fraction of the param-
eter space, competitive interactions are lost less often
than expected by chance alone (figure 3C). Broadly, the
same results hold for communities with exploitation,
except that it is exploitation that is lost less often than
expected by chance alone, whereas both cooperation

and competition may be lost either more often or less
often than expected by chance alone (supplementary
figures 3–7). Although competitive interactions may be
lost either more often or less often than expected by
chance alone in communities with exploitation, the
magnitude of the bias away from chance expectations
is greater when competition is selectively lost (sup-
plementary figure 6). The result presented in figure 3C
also holds for communities with smaller species rich-
ness (S = 7), albeit with a smaller magnitude of the
effect (supplementary figures 8 and 9).
The greater loss of competitive interactions can be

understood through the following reasoning. Given any
two species i and j, the net effect of species j on the
growth rate of species i depends on both their inter-
action type and strength (aij) and on the population
density of species j (Nj). Thus, for a given species i, if
the magnitude of interspecific interaction strengths

( aij
�
�

�
�) are approximately similar, the strongest inter-

specific effect will be from the species with the highest
population density (Nj). In other words, if interaction
strengths are similar, the most significant interspecific
effect on species i will be caused by the species j which
has the largest number of individuals. Immediately
following a perturbation (i.e., random killing of a
fraction of the individuals in the community), highly
competitive species are likely to experience a larger
growth rate, and species that are more cooperative are
likely to experience a lower growth rate. For two
species engaged in a cooperative (?/?) interaction, the
reduction of population size of one species (henceforth
referred to as the target species) leads to a reduction in
the realized growth rate of the other species (henceforth
referred to as the partner species). Since, in our simu-
lations, the communities begin at equilibrium (i.e., zero
growth rate), any reduction makes the growth rate
negative, thus reducing the population size of the
partner species. This, in turn, causes a decrease in
population size of the target species by the same logic.
Thus, cooperative species tend to drive themselves to
ever-lower numbers through positive feedback loops
(Coyte et al. 2015; Lever et al. 2020).
Species which are engaged in a large number of

competitive interactions enjoy a release from compe-
tition immediately after a perturbation and thus are
likely to have the largest population size in the com-
munity. In figure 4A, we show that the species engaged
in the most number of competitive species, which we
call the ‘top competitor’, quickly becomes the domi-
nant species in the community following a perturbation
(figure 4A, black trajectory). However, since
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Figure 3. The fate of cooperative and competitive interactions after species loss. In all simulations, S = 15 before
perturbations. Interaction strengths were drawn from a gamma distribution such that the mean is 0.25 and the variance is 0.01.
By plotting the difference between the observed and expected values of the number of interactions of each type, we can
examine whether some interaction types tend to be preserved after extinction events. Here, the expected values are the values
of the original community, while the observed values are those measured after equilibrium attainment following the induced
perturbation. If this value is greater than 0, fewer interactions of that type are being lost than would be expected by chance
alone, and if the value is less than 0, then more interactions are being lost than expected by chance alone. (A) The difference
in the proportion of interactions before and after a perturbation is statistically significant, as tested by the Wilcoxon rank-sum
test (n = 100, W = 1737, p\0.001, effect size r = 0.564). In this plot, s = 1.05. (B) For a fixed value of s (here, s = 1.05),
regardless of the value of pm, on average, cooperative interactions tend to be lost less often than expected by chance alone. In
contrast, chance alone loses competitive interactions more often than expected. In this plot, the points represent the mean over
100 realizations, and error bars represent 95% CIs. (C) This qualitative result is valid for a large fraction of the parameter
space, as indicated by heatmaps in which pm is varied along the y-axis and s is varied along the x-axis. In these plots, the
color represents the mean difference (over 100 realizations) between the observed and expected number of interactions
following a perturbation. Warmer/redder colors indicate that the difference is greater than 0 (i.e., more cooperative
interactions are retained), and cooler/bluer colors indicate that the difference is less than 0 (i.e., more competitive interactions
are retained). For a large region of the parameter space, cooperation tends to be preferentially retained, whereas competition
tends to be preferentially lost.
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interactions are assigned at random, even the top
competitor will likely be engaged in (a small number
of) cooperative interactions. Once a small number of
such competitive species have risen to relatively large
population sizes, they will then ‘pull up’ those species
engaged in cooperative interactions with them (fig-
ure 4A, red trajectories) while ‘pushing down’ other
competitors and driving them closer to extinction
(figure 4A, grey trajectories). Thus, species engaged in
positive interactions with highly competitive species
tend to go extinct less often than expected by chance
alone (figure 4B; Wilcoxon rank-sum test, W = 6113.5,
p\0.001), and effect size calculations indicate that the
reduction in extinction rate is moderately large (Wil-
coxon effect size, r = 0.338). Since we studied random,
unstructured communities, species engaged in a higher
number of cooperative interactions are more likely to
be engaged in cooperative interactions with the top
competitors. In contrast, species engaged in a higher
number of competitive interactions are more likely to
be engaged in competitive interactions with the top
competitors (probabilistically). Thus, species engaged
in more cooperative interactions are more likely to get

a boost in growth rate due to being engaged in positive
interactions with highly competitive species. On the
other hand, more competitive species are likely to be
engaged in competitive interactions with the top com-
petitor and are thus pushed to extinction. This mecha-
nism does not work if the proportion of cooperation is
very high because all competitors, in this case, are
likely supported by a large number of cooperative
interactions, which explains the trend reversal at high
pm values. This explanation reveals that species
engaged in a large number of exploitative interac-
tions enjoy two distinct benefits following a pertur-
bation – species that are exploited by many species
obtain a large increase in growth rate immediately
following a perturbation due to release from
exploitation/predation, whereas species that exploit a
large number of species experience an increase in
growth rate through a mechanism similar to that
explained for mutualists above. Indeed, in commu-
nities with exploitative interactions, simulations
reveal that the proportion of exploitative interactions
always increases following a perturbation (supple-
mentary figures 4 and 7).

Figure 4. Mechanism for the stability of communities induced by extinctions in unstable communities. (A) The trajectories
of individual populations of each species for a single realization of the IBM with S = 15, pm = 0.5, s = 1.05 are plotted. The
species with the largest number of competitive interactions (the ‘top competitor’) are shown in black, species engaged in
cooperative interactions with the top competitor are in red, and all other species are in grey. Following a perturbation, the top
competitor quickly increases in numbers and ‘pulls along’ those species engaged in cooperative interactions while driving the
others to extinction. (B) Statistical analysis of 100 independent realizations reveals that for this set of parameters (S = 15,
pm = 0.5, s = 1.05) if the top competitor does not go extinct, the extinction probability of species that are engaged in
cooperative interactions with the top competitor is significantly less than the background extinction probability of the
community as a whole (Wilcoxon rank-sum test, W = 6945.5, p\0.0001, effect size r = 0.338). The center of the box plot
denotes the median, and the edges of the box indicate the upper and lower quartile.
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Our explanation of how competitive interactions are
selectively removed while cooperative interactions are
maintained hinges on the assumption that the com-
munity is unstructured and can be modeled as a random
matrix of interactions between species. Communities in
nature, of course, may not necessarily satisfy these
criteria. For example, there may be a community where
the most competitive species do not engage in any
cooperative interactions. In such a community, even
though some highly competitive species may see a
sharp rise in population density following a perturba-
tion, they may not pull up the numbers of species that
participate in cooperative interactions. Our analysis
does not attempt to model such exceptional cases and is
meant to interpret the results for typical random,
unstructured communities. Strictly speaking, excep-
tional cases, such as those mentioned above, can arise
despite a random assignment of interactions between
species. However, the probability of such communities
in our design is extremely low and therefore are unli-
kely to play a critical role in driving the general trends.

4. Discussion

Our results indicate that when a community is unstable
(in the persistence sense, i.e., likely to lose species after
a perturbation), only a subset of the species in the
community goes extinct before the community
becomes stable again (figure 2C), recapitulating the
results of Rohr et al. (2025) using an IBM. Further-
more, we showed that species engaged in more coop-
erative interactions are less likely to go extinct,
suggesting that the extinction patterns in randomly
assembled communities are non-random with respect
to interaction type. While similar results predicting that
competitive interactions are more likely to go extinct
have been presented for food webs (Barabás et al.
2017) and structured communities with nested inter-
actions (Thébault and Fontaine 2010), our results
indicate that unstructured (i.e., randomly assembled)
communities with multiple types of interactions also
exhibit the same bias towards losing competitive
interactions in the event of an extinction. The effects
we uncovered thus represent systematic biases in
extinction probability that will consistently affect
resultant community dynamics following any external
perturbation that is strong enough to lead to species
loss. Together with previous results (Thébault and
Fontaine 2010; Barabás et al. 2017), these dynamics
suggest a potential explanation for the prevalence of
cooperation in natural communities (Kehe et al. 2021;

Machado et al. 2021) – a community can harbor rea-
sonably high levels of cooperation if it is formed due to
species loss from a larger randomly interacting com-
munity. Community assembly is often thought to occur
by random dispersal followed by environmental filter-
ing and subsequent exclusion of some species due to
biotic interactions (Begon et al. 2006; Molles 2015).
These are precisely the kind of processes for which our
results would be relevant. Thus, our model highlights
the importance of assembly processes in determining
community structure.
A recent modeling study of assembly processes in

communities also suggests that when species sequen-
tially invade a community, a balance of interaction
types is vital for community stability, with higher
fractions of cooperative interactions corresponding to
increased species persistence as well as increased sta-
bility of the community as a whole to external inva-
sions (Qian and Akçay 2020). Such so-called
‘ecological selection’ (Qian and Akçay 2020) for
community structure during assembly has also been
observed in dispersal models (Denk and Hallatschek
2024) and eco-evolutionary community models (Ser-
ván and Allesina 2021; Nell et al. 2022). Our study
highlights that ecological selection of this form can
operate not only through a sequential assembly of
communities but also through extinctions from initially
assembled unstable communities. In nature, a situation
mirroring our model is often encountered in commu-
nities such as microbiomes, where empirical data
suggest that many species are randomly assembled
through dispersal processes and environmental filtering
(Venkataraman et al. 2015; Sieber et al. 2019).
Empirical studies of microbial communities also sug-
gest that positive interactions, in the sense of
exploitations as well as mutualisms, are ubiquitous in
culturable bacteria (Kehe et al. 2021; but see Palmer
and Foster 2022). Our study provides a mechanistic
hypothesis for reconciliation of such empirical results
with theories regarding the destabilizing effects of
cooperation (Allesina and Tang 2012; Coyte et al.
2015).
Our model also predicts an emergent non-random

interaction structure from an initially unstructured,
unstable community. Since competitive interactions
with the top competitor are selectively lost, the
stable community so formed is likely to have a small
number of ‘central’ species (previously the ‘top com-
petitors’) engaged in positive interactions with most
community members. Competitive interactions with
this ‘central’ species should be relatively weak. This
aligns with a previous analytical study which predicts
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that assembly processes lead to ecological networks
with weaker competition and stronger cooperation than
the original species pool (Bunin 2016). A similar
phenomenon has also been observed in an analytical
model of unstructured communities with higher-order
interactions (Gibbs et al. 2022). In this study, the
authors found that when interaction strengths in their
model were low, the dominant species in communities
with higher-order interactions tended to be those
engaged in positive interactions with each other and
negative interactions with species that have lower
species density. By studying the dynamics of unsta-
ble communities, our results underscore the need to go
beyond the question of whether communities are
stable to study the fate of unstable communities. While
such studies are often complex to conduct analytically,
computational methods, laboratory experiments, and
long-term field observations provide potential avenues
to address this vital question.
Although we have only looked at randomly assem-

bled communities, a previous simulation study (Garcı́a-
Callejas et al. 2018) suggests similar results may hold
for structured trophic networks. These authors found
that positive interactions such as cooperation and
commensalism promoted persistence in trophic net-
works with low species richness. However, this effect
was less pronounced at higher species richness. Our
study neglected environmental or spatial heterogeneity,
which are known to affect coexistence and stability
(Durrett and Levin 1994; Krakauer and Pagel 1995; Yu
et al. 2001; Allen et al. 2013; Stein et al. 2014; Gordon
et al. 2015; Hauert and Doebeli 2021; Ursell 2021).
Another factor that can potentially affect community
stability is demographic stochasticity, which has been
shown to promote cooperation in many model systems
(Houchmandzadeh and Vallade 2012; Houch-
mandzadeh 2015; Chotibut and Nelson 2015; Consta-
ble et al. 2016; McLeod and Day 2019; Altieri et al.
2021). Lastly, nonlinearities in population dynamics
can also stabilize community population dynamics and
favor coexistence, especially in mutualistic networks
(Ringel et al. 1996; Holland et al. 2002; Bastolla et al.
2009; Lever et al. 2020; Bascompte and Scheffer
2023). By neglecting these factors, we do not mean to
imply that they are unimportant. Instead, we illustrate
that they cannot solely be responsible for explaining
the occurrence of cooperation since, as we have shown,
cooperation may persist purely through non-random
extinction processes during initial community
assembly.
We also did not study the possibility of targeted

perturbations that only affect certain species in a

community. The positive feedback loop proposed by
Coyte et al. (2015) for the destabilizing effect of
cooperative species suggests that selectively reducing
the population of the most cooperative species in the
population should lead to the extinction of other
cooperative species in the community. The mechanism
we propose for the selective loss of competitive inter-
actions following a perturbation (figures 3C and 4) also
suggests that selectively perturbing the density of the
top competitor should lead to an increase in the den-
sities of all other species engaged in competitive
interactions with this top species. However, a complete
investigation into the effects of non-random perturba-
tions is beyond the scope of the present study and may
be an interesting direction for future work.
Our model also assumes that all direct community

interactions are pairwise and allows higher-order
interactions to only manifest as emergent properties of
the simulation. Analytical studies suggest that many
classic results from pairwise interaction models carry
over to models with higher-order interactions (Gibbs
et al. 2022). In particular, May’s classic results on the
diversity–stability relation (May 1973) carry over to
models with higher-order interactions (Gibbs et al.
2022). Therefore, there is a possibility that such models
may lead to results analogous to those presented in this
study. However, it bears noting that a large number of
species can be made to coexist in a community if
higher-order interactions are tuned in a non-random
way to enhance effective competition strengths. In
particular, if higher-order interactions in a community
are structured such that the interactions overall strongly
increase the effective intraspecific competition (relative
to effective pairwise interspecific competition), May’s
result can be inverted and species richness can promote
stability (Grilli et al. 2017; Singh and Baruah 2021).
Structured interactions can also favor mutualism more
generally if the community structure is wired to be such
that the effective intraspecific competition is high
(Ringel et al. 1996; Holland et al. 2002; Bastolla et al.
2009; Lever et al. 2020; Bascompte and Scheffer
2023).
A recent study has argued on analytic grounds that

cooperation also does not reduce resilience in Lotka–
Volterra communities if studies use the so-called
‘community matrix’, which differs from the more
commonly used ‘interaction matrix’, by accounting for
species densities (Stone 2020). Our explanation for the
non-random loss of competitive interactions from an
unstable community following a perturbation also
crucially relies on the observation that species densities
play a large role in determining community dynamics.

Cooperation in unstable ecological communities Page 13 of 16     2 



However, in contrast to the analytical study, our model
predicts a decrease in stability with an increase in
cooperation but, nevertheless, provides a potential
explanation for the prevalence of cooperative interac-
tions in nature, namely, ‘ecological selection’.
Lastly, our simulations are over ecological timescales

and do not allow for evolution via speciation or evo-
lution in traits (interaction strengths and/or intrinsic
growth rates). Incorporating evolution is known to
qualitatively alter the predictions of purely ecological
models (Schoener 2011; Kokko et al. 2017; Yamamichi
et al. 2022). A suite of empirical studies increasingly
indicates that the separation of timescales between
ecology and evolution can often be blurred, especially
in the case of organisms such as microbes (Schoener
2011). Including evolutionary processes in the eco-
logical coexistence theory and the cooperation–
competition debate thus provides an attractive avenue
for future studies.
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The effect of multiple biotic interaction types on species
persistence. Ecology 99 2327–2337

Gibbs T, Levin SA and Levine JM 2022 Coexistence in
diverse communities with higher-order interactions. Proc.
Natl. Acad. Sci. USA 119 e2205063119

    2 Page 14 of 16 AS Bhat et al.



Gordon SP, Kokko H, Rojas B, et al. 2015 Colour
polymorphism torn apart by opposing positive fre-
quency-dependent selection, yet maintained in space.
J. Anim. Ecol. 84 1555–1564

Grilli J, Barabás G, Michalska-Smith MJ, et al. 2017 Higher-
order interactions stabilize dynamics in competitive
network models. Nature 548 210–213

Grimm V and Wissel C 1997 Babel or the ecological
stability discussions: an inventory and analysis of termi-
nology and a guide for avoiding confusion. Oecologia
109 323–334

Hauert C and Doebeli M 2021 Spatial social dilemmas
promote diversity. Proc. Natl. Acad. Sci. USA 118
e2105252118

Holland JN, De Angelis DL and Bronstein JL 2002
Population dynamics and mutualism: Functional
responses of benefits and costs. Am. Nat. 159 231–244

Houchmandzadeh B 2015 Fluctuation driven fixation of
cooperative behavior. Biosystems 127 60–66

Houchmandzadeh B and Vallade M 2012 Selection for
altruism through random drift in variable size populations.
BMC Evol. Biol. 12 61

Jansen V and Sigmund K 1998 Shaken not stirred: On
permanence in ecological communities. Theor. Popul.
Biol. 54195–201

Kehe J, Ortiz A, Kulesa A, et al. 2021 Positive interactions
are common among culturable bacteria. Sci. Adv. 7
eabi7159

Kokko H, Chaturvedi A, Croll D, et al. 2017 Can evolution
supply what ecology demands? Trends Ecol. Evol. 32
187–197

Krakauer DC and Pagel M 1995 Spatial structure and the
evolution of honest cost-free signalling. Proc. R. Soc.
B Biol. Sci. 260 365–372

Lever JJ, van de Leemput IA, Weinans E, et al. 2020
Foreseeing the future of mutualistic communities beyond
collapse. Ecol. Lett. 23 2–15

Machado D, Maistrenko OM, Andrejev S, et al. 2021
Polarization of microbial communities between competitive
and cooperative metabolism. Nat. Ecol. Evol. 5 195–203

May RM 1973 Stability and complexity in model ecosystems
(Princeton: Princeton University Press)

McLeod DV and Day T 2019 Social evolution under
demographic stochasticity. PLoS Comput. Biol. 15
e1006739

Molles MC 2015 Ecology: concepts and applications 7th
edition (New York: McGraw-Hill Education)

Mougi A 2016a The roles of amensalistic and commensal-
istic interactions in large ecological network stability. Sci.
Rep. 6 29929

Mougi A 2016b Stability of an adaptive hybrid community.
Sci. Rep. 6 28181

Mougi A and Kondoh M 2012 Diversity of interaction types
and ecological community stability. Science 337 349–351

Mougi A and Kondoh M 2016 Food-web complexity, meta-
community complexity and community stability. Sci. Rep.
6 24478

Nell LA, Phillips JS and Ives AR 2022 When should
coevolution among competitors promote coexistence
versus exclusion? bioRxiv 2022.11.01.514799

Palmer JD and Foster KR 2022 Bacterial species rarely work
together. Science 376 581–582
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