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Abstract1

Theoretical studies from diverse areas of population biology have shown that demographic2

stochasticity can substantially impact evolutionary dynamics in finite populations, including sce-3

narios where traits that are disfavored by natural selection can nevertheless increase in frequency4

through the course of evolution. Historically, most general analytic frameworks have either re-5

stricted themselves to models with constant or deterministically varying total population size or6

have resorted to dynamically insufficient formulations. Here, we analytically describe the eco-7

evolutionary dynamics of finite populations from demographic first principles to investigate how8

noise-induced effects can alter the evolutionary fate of populations in which total population size9

may vary stochastically over time. Starting from a generic birth-death process describing a finite10

population of individuals with discrete traits, we derive a set of stochastic differential equations11

(SDEs) that recover well-known descriptions of evolutionary dynamics such as the replicator-12

mutator equation, the Price equation, and Fisher’s fundamental theorem in the infinite popu-13

lation limit. For finite populations, our SDEs reveal how stochasticity can induce a directional14

evolutionary force termed ‘noise-induced selection’ via two distinct mechanisms, one that oper-15

ates over relatively faster (ecological) timescales and another that is only apparent over longer16

(evolutionary) timescales. Despite arising from the stochasticity of finite systems, the effects of17

noise-induced selection are predictable and may oppose natural selection. In some cases, noise-18

induced selection can even reverse the direction of evolution predicted by natural selection. By19

extending and generalizing some standard equations of population genetics, we thus describe20

how noise-induced selection appears alongside and interacts with the more well-understood21

forces of natural selection, neutral drift, and transmission effects (mutation/migration) to deter-22

mine the eco-evolutionary dynamics of finite populations of non-constant size.23

2

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


Introduction24

Eco-evolutionary population biology has a strong mathematical underpinning, and can broadly25

be captured mathematically under a single unifying framework via the replicator-mutator equa-26

tion and the Price equation. This formalism yields several relevant mathematical structures of27

evolution, such as evolutionary game theory and classic population genetics, as special cases (Page28

and Nowak, 2002; Queller, 2017; Lion, 2018). The Price equation partitions changes in population29

composition into multiple terms, each of which lends itself to a straightforward interpretation30

in terms of the high-level evolutionary forces of selection and mutation, thus providing a use-31

ful mathematical framework for describing how populations change over time (Frank, 2012).32

The Price equation also leads to a number of simple yet insightful ‘fundamental theorems’ of33

population biology and unifies several various seemingly disjoint formal structures under a sin-34

gle theoretical banner (Queller, 2017; Lion, 2018; Lehtonen, 2020; Luque and Baravalle, 2021).35

However, the replicator-mutator equation, Price equation, and related ‘fundamental theorems’ of36

evolutionary dynamics are usually formulated in a deterministic setting that neglects stochastic37

fluctuations due to finite population effects (Page and Nowak, 2002; Queller, 2017; Lion, 2018).38

Today, we increasingly recognize that incorporating the finite and stochastic nature of the39

real world routinely has much stronger consequences than simply ‘adding noise’ to determin-40

istic expectations and can cause qualitative changes in the behavior of diverse biological sys-41

tems (Horsthemke and Lefever, 1984; Black and McKane, 2012; Boettiger, 2018; Jhawar et al.,42

2020; Majumder et al., 2021; DeLong and Cressler, 2023; Yamamichi et al., 2023). In ecology and43

evolution, stochastic models need not exhibit phenomena predicted by their deterministic ana-44

logues (Proulx and Day, 2005; Johansson and Ripa, 2006; Black and McKane, 2012; Débarre and45

Otto, 2016). They may also exhibit novel phenomena not predicted by deterministic models (Con-46

stable et al., 2016; Rogers and McKane, 2015; Joshi and Guttal, 2018; DeLong and Cressler, 2023).47

A striking example of such novel phenomena is the complete ‘reversal’ of the evolutionary48

trajectory that is seen in some finite population evolutionary models (Houchmandzadeh and49

Vallade, 2012; Constable et al., 2016; McLeod and Day, 2019a; Mazzolini and Grilli, 2023). For50

example, in public goods games, the production of a costly public good is susceptible to invasion51

by ‘cheaters’ who use the public good but do not produce it. Due to this, standard (deterministic)52

evolutionary game theory predicts that producers should eventually go extinct. However, in53

finite, fluctuating populations, producers not only persist but also outcompete non-producers,54

the exact opposite of infinite population predictions (Constable et al., 2016; McLeod and Day,55

2019a). This phenomenon of evolution proceeding in the direction of the classically disfavored56

type that leads to the ‘reversal’ of the prediction of deterministic natural selection has been57

dubbed ‘noise-induced selection’ (Week et al., 2021). Such noise-induced effects have been seen58

in several models in fields as diverse as epidemiology (Humplik et al., 2014; Parsons et al., 2018;59

McLeod and Day, 2019b; Day et al., 2020), cell-cycle dynamics (Wodarz et al., 2017), and social60
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evolution (Houchmandzadeh and Vallade, 2012; Chotibut and Nelson, 2015; Constable et al.,61

2016; McLeod and Day, 2019a).62

Despite the ubiquity of the phenomenon of qualitative noise-induced effects on evolution-63

ary trajectories, we currently lack a description of how classic equations of evolution such as64

the replicator-mutator equation and Price equation are affected by such demographic stochas-65

ticity. Bet-hedging theory, a branch of evolutionary ecology that aims to build general theories66

that capture the effects of stochasticity on eco-evolutionary dynamics (Seger and Brockmann,67

1987; Frank and Slatkin, 1990; Starrfelt and Kokko, 2012), has typically worked with abstract68

populations in which the mean reproductive output and the variance in reproductive output69

are essentially independent parameters (Gillespie, 1974; Gillespie, 1977; Frank and Slatkin, 1990;70

Shpak, 2005). Furthermore, models of bet-hedging have typically worked with populations af-71

fected by spatiotemporally fluctuating external noise that is the result of stochastic fluctuations72

in external environments (Seger and Brockmann, 1987; Olofsson et al., 2009; Childs et al., 2010;73

Starrfelt and Kokko, 2012), whereas most formulations of the standard equations of population74

genetics (Page and Nowak, 2002; Lion, 2018; Lehtonen, 2018) as well as many models showing75

noise-induced effects on eco-evolutionary dynamics (Parsons et al., 2010; Houchmandzadeh and76

Vallade, 2012; Constable et al., 2016; Parsons et al., 2018; McLeod and Day, 2019a; Day et al.,77

2020) do not model any external environment at all. Due to this, it is often unclear a priori under78

what situations these noise-induced effects become important for evolutionary dynamics or how79

these effects interact with the more well-understood evolutionary forces of natural selection, mu-80

tation, and drift (Yamamichi et al., 2023). For example, how does noise-induced selection interact81

with genetic drift, or indeed natural selection? Are ‘noise-induced selection’ and ‘bet-hedging’82

essentially the same effect that has been spoken about using different terminology, or are there83

multiple distinct phenomena at play?84

Stochastic individual-based models are a natural choice for describing the dynamics of finite85

populations to try and examine the interplay of noise-induced effects and more well-understood86

evolutionary forces using a first principles approach. Here, probabilistic rules for birth and death87

are specified at the individual level. Such models allow us to capture a stochastically varying88

population size, and thus enable us to relax assumptions of constant population size as seen in89

models such as the Wright-Fisher or Moran process (Lambert, 2010; Abu Awad and Coron, 2018).90

From these individual-based rules, we can now systematically derive population-level dynamics91

and thus avoid potential pitfalls that can arise when simply adding noise terms to a ‘deterministic92

skeleton’ in an ad-hoc fashion (Coulson et al., 2004; Black and McKane, 2012; Strang et al., 2019).93

Furthermore, since demographic processes such as birth and death rates explicitly account for the94

ecology of the system, they can more accurately reflect the complex interplay between ecological95

and evolutionary processes and provide a fundamental, mechanistic description of the relevant96

population dynamics (Lambert, 2010; Doebeli et al., 2017).97

In this paper, we derive general equations for the dynamics of finite, fluctuating populations98
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evolving in continuous time starting from such mechanistic first principles (Fig 1). These equa-99

tions reduce to well-known results such as the replicator-mutator equation and the Price equation100

in the infinite population limit, thus illustrating consistency with the known formal structures of101

eco-evolutionary population dynamics (Queller, 2017; Lion, 2018). For finite populations, these102

same equations also provide a generic description and synthesis of the noise-induced effects of103

finite population size and their consequences for eco-evolutionary population dynamics. Such a104

systematic derivation provides relations between ecological quantities such as the expected popu-105

lation growth rate and the variance in population growth rate and connects them to evolutionary106

forces such as natural selection and genetic drift in trait frequency space. Using these equations,107

we synthesize the connections between noise-induced effects on population dynamics, including108

the ‘Gillespie effect’ of bet-hedging theory (Gillespie, 1977), ‘noise-induced effects’ in ecological109

population models (Constable et al., 2016; Parsons et al., 2018), ‘drift-induced selection’ (Veller110

et al., 2017; Saunders et al., 2018), ‘noise-induced selection’ (Week et al., 2021), and long-term ef-111

fects of demographic stochasticity through the effects of ‘evolutionary noise’ (McLeod and Day,112

2019a; McLeod and Day, 2019b).113

Figure 1: An outline of the approach we adopt in this paper
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A stochastic birth-death process for population dynamics114

We consider a well-mixed population that can contain up to m different types of individual115

entities. For example, a gene may have m different alleles, individuals within a species may come116

in one of m phenotypes, or a community may have m different species; we refer to each distinct117

variant of an entity as a ‘type’. Unlike many classic stochastic formulations in evolutionary118

theory (Crow and Kimura, 1970; Lande, 1976; Kimura and Ohta, 1974), we do not assume a fixed119

or deterministically varying (effective) population size. Instead, we allow the total population120

size to emerge naturally, and thus fluctuate stochastically, from the stochastic birth and death121

processes (Fig 1).122

Description of the process123

Given a population that can contain up to m different kinds of entities, it can be completely124

characterized by specifying the number of individuals of each type of entity. Thus, the state of the125

population at a given time t is an m-dimensional vector of the form n = [n1(t), n2(t), . . . , nm(t)]T,126

where ni(t) is the number of individuals of type i.127

We assume that the birth and death rate of each type in the population depends only on128

the state of the population (the vector n), and thus neglect any potential contributions from129

a temporally varying external environment. Our model unfolds in continuous time, and we130

assume that the probability of two or more births (or deaths) occurring at the same instant is131

negligible. For each type i ∈ {1, 2, . . . , m}, we denote the birth rate and the death rate by bi(n)132

and di(n), respectively. We assume that the birth and death rates at the population level scale133

with the total population size such that bi(n) and bi(n) are of the order of ∑i ni. Further, we134

assume that there exists a carrying capacity or more generally a a population size measure (Czuppon135

and Traulsen, 2021) K > 0 that imposes a bound on population growth rate such that the growth136

rate of the total population size ∑i ni is expected to be negative whenever ∑i ni > K.137

We can now define a notion of population density x = n/K by dividing the population138

number by the carrying capacity. In terms of population densities, our assumption on the bound139

on growth rate translates to the growth rate of population density being negative whenever140

the density exceeds 1. Naturally, the limit K → ∞ corresponds to the limit of infinitely large141

populations. Note that we may still speak of population densities in the infinite population size142

limit since population densities remain finite.143
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Functional forms of the birth and death rates144

In mathematical terms, the above assumptions on population growth rates and birth and death145

rates amount to saying that we can find O(1) functions b(K)i and d(K)i such that we can write146

bi(n) = Kb(K)i (n/K)

di(n) = Kd(K)i (n/K)
(1)147

Further, we assume that the birth and death rate functions have the functional form148

b(K)i (x) = xib
(ind)
i (x) + λQi(x)

d(K)i (x) = xid
(ind)
i (x)

(2)149

where b(ind)
i (x) and d(ind)

i (x) are non-negative functions that respectively describe the per-capita150

birth and death rate of type i individuals. Mutation or migration that is of the form xi f (x)151

for some function f can simply be subsumed into the per-capita rates b(ind)
i (x) and d(ind)

i (x).152

However, the birth rate of type i individuals may contain a component that does not depend153

purely multiplicatively on the density of type i: For example, when xi = 0, i.e. there are no154

type i individuals in the population, individuals of type i may still be born through mutations155

of other types or immigration from other sources (gene flow). To account for this possibility, we156

include the second term λQi in the birth rate function, as we explain in detail below. Note that157

no analogous problem exists for the death rate, since the death rate of type i individuals must be158

0 when xi is 0 to ensure that we never have negative population densities.159

The term λQi in Eq. 2 models an influx of type i individuals from sources other than the160

existing pool of type i individuals. Here, λ ≥ 0 is a constant describing the rate of influx of type161

i individuals from sources other than the exsting pool of type i individuals, and Qi(x) is a non-162

negative function that describes this additional contribution. For example, if type i individuals163

can arise due to mutations of offspring of other types of individuals during birth, λ would164

represent a mutation rate (typically denoted by µ) and Qi would model the functional form of165

mutation. A common choice, for example, is Qi(x) = ∑j ̸=i xj (i.e. the mutation j → i occurs at166

a total rate of µxj). The influx term could also model immigration of type i individuals from167

other populations, since such immigration would depend not on the density of individuals xi168

in our focal population, but on the density of individuals in the ‘source population’ from which169

individuals are emigrating into our focal population. In this latter case, λ would represent a170

dispersal rate and Qi would model the dispersal.171

Our assumptions of the functional forms given by Eq. 2 thus amount to saying that birth and172

death rates of type i are in a form that allows us to write down per-capita birth and death rates173

of type i individuals, except for a potential extra influx term Qi(x) whose strength is controlled174

by an influx rate λ (assumed the same for all types). We emphasize that these birth and death175
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rates can incorporate complicated interactions, but as we will see, the particular forms of these176

rate functions do not matter for our purposes as long as certain basic mathematical scaling177

assumptions are met (see Supplementary section S1).178

We define the Malthusian fitness of the ith type as179

wi(x) := b(ind)
i (x)− d(ind)

i (x) (3)180

and the per-capita turnover rate of the ith type as181

τi(x) = b(ind)
i (x) + d(ind)

i (x) (4)182

The quantity wi(x) describes the per-capita growth rate of type i individuals in a population183

x, discounting the extra influx term. It is notable that both wi and τi depend on the state of the184

population as a whole (i.e. x) and not just on the density of the focal type. Thus, in general, both185

the fitness and the turnover rate in our model may be both density-dependent and frequency-186

dependent.187

Statistical measures for population-level quantities188

Given any state x(t) that describes our population at time t, let us first define the total (scaled)189

population size (NK(t)) and the frequency pi(t) of each type i in the population at time t as:190

NK(t) :=
m

∑
i=1

xi(t) =
1
K

m

∑
i=1

ni(t)

pi(t) :=
ni(t)

m
∑

j=1
ni(t)

=
xi(t)

m
∑

j=1
xi(t)

=
xi(t)

NK(t)
(5)191

NK here is an O(1) quantity and KNK is the total population size, which is O(K). Since NK is192

the sum of m stochastically fluctuating quantities, the total population size KNK also experiences193

stochastic fluctuations and is thus non-constant in our model. We use the term ‘fluctuating194

populations’ henceforth to refer to populations of non-constant size that experience stochastic195

fluctuations in this manner.196

Note that while it may appear as if we have increased the number of dimensions of the system197

by 1, the frequency vector is subject to the constraint ∑i pi = 1, and we thus only need to study198

the system using the m variables [p1, p2, . . . , pm−1, NK]. We are often interested in tracking the199

effects of evolution on quantities described at a population level. To facilitate this, let f be any200

quantity that can be defined at the type-level, such as phenotype or fitness, with a (possibly201

time-dependent) value fi ∈ R for the ith type. Recall that we defined m discrete types in the202

population on the basis that individuals within each type can be approximated as identical.203
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Now, the statistical mean value of such a quantity in the population [p1, p2, . . . , pm], which we204

denote by f̄ , is given by205

f (t) :=
m

∑
i=1

fi pi (6)206

while the statistical covariance of two such quantities f and g in the population is given by207

Cov( f , g) := f g − f g (7)208

Lastly, the statistical variance of a quantity f in the population is given by σ2
f := Cov( f , f ). It is209

important to recognize that these statistical quantities are distinct from and independent of the210

probabilistic expectation, variance, and covariance obtained by integrating over realizations in the211

underlying probability space. We will denote this latter expectation and variance by E[·] and212

V[·] respectively for clarity.213

Fundamental equations of eco-evolutionary dynamics214

Ecological dynamics: Changes in population density215

Having defined key assumptions of our eco-evolutionary dynamics via a generic birth and death216

process, we now proceed to understand how the population density vector x, changes over time.217

Recall that the stochastic birth-death process changes in units of 1/K in density space. Thus,218

if K is large, each individual contributes a negligible amount to the population density, and the219

discontinuous jumps due to individual-level births or deaths in units of 1/K can be approximated220

as small, continuous changes in population density x. In Supplementary section S1, we use221

a formal version of this intuitive idea via a ‘system size expansion’ (Ethier and Kurtz, 1986,222

Chapter 11; Van Kampen, 1981, Chapter 10; Black and McKane, 2012; Czuppon and Traulsen,223

2021) to derive a continuous description of the stochastic process for population densities. This224

continuous description takes the form of an Itô stochastic differential equation (Itô SDE) which225

says that the density of the ith type changes according to226

dxi = [xiwi(x) + λQi(x)] dt +
1√
K

√
xiτi(x) + λQi(x)dW(i)

t (8)227

where each W(i)
t is an independent one-dimensional Wiener process (standard Brownian motion);228

recall that wi and τi are Malthusian fitness and turnover rate of type i, respectively, as defined in229

Equations (3) and (4) whereas λQi captures the influx.230

The first and second terms on the RHS of Eq. 8 respectively provide the so-called ‘infinitesi-231

mal mean’ and ‘infinitesimal variance’ of the stochastic process xi(t) that satisfies Eq. 8 (Karlin232

and Taylor, 1981; Czuppon and Traulsen, 2021). Informally, the infinitesimal mean and variance233
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can be understood as follows: If we imagine that the population density of type i changes from234

xi to xi + dxi over a very small (infinitesimal) time interval dt, we can (informally) view dxi as a235

random variable. In that case, the expected density change E[dxi] and the variance in the change236

V[dxi] are respectively given by:237

E[dxi] = xiwi(x) + λQi(x) (9a)238

239

V[dxi] =
1
K
(xiτi(x) + λQi(x)) (9b)240

Thus, the Malthusian fitness wi controls the expected change in population density, whereas the241

turnover rate τi (which is also a measure of the total number of events experienced by type i in a242

given time interval) controls the variance in the change in population density. Note that unlike243

in classic bet-hedging (Gillespie, 1974), an additional influx of individuals as modeled by λQi244

could mean that τi is not equal to the infinitesimal variance, but is simply proportional to it.245

Eq. 8 describes the ecological population dynamics. However, evolution is described not in246

terms of population density, but in terms of trait frequencies. Thus, to study the evolutionary dy-247

namics of finite populations, we need to move from population densities x to trait frequencies p.248

This seemingly innocuous observation has important consequences for evolutionary dynamics,249

as we explain below and in Box 1.250

Replicator-mutator equation for finite fluctuating populations251

We now use Itô calculus to derive equations for the evolutionary dynamics of trait frequencies252

from Eq. 8, our SDE for population densities. Letting w = ∑ wi pi and τ = ∑ τi pi be the average253

population fitness and the average population turnover respectively, we show in Supplementary254

section S2 that pi, the frequency of the ith type in the population x(t), changes according to the255

equation:256

dpi(t) = [(wi(p, NK)− w)pi] dt︸ ︷︷ ︸
Natural Selection

(higher fitness is better)

− 1
KNK(t)

[(τi(p, NK)− τ)pi] dt︸ ︷︷ ︸
Noise-induced selection via

Gillespie effect (lower turnover is better)

+ λ

(
1 − 1

KNK(t)

){
Qi(p)− pi

(
m

∑
j=1

Qj(p)

)}
dt︸ ︷︷ ︸

Transmission effects due to
influx of individuals from other sources

(mutation, migration, etc.)

+
1√

KNK(t)
dWp︸ ︷︷ ︸

Stochastic fluctuations
(Non-directional

over small timescales)

(10)257
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where we have defined Qi(p) := Qi(x)/NK(t). Here, Wp is a stochastic integral term given by258

dWp :=

√√√√pi(1 − pi)2τi + p2
i

(
∑
j ̸=i

τj pj

)
+ λ

(
(1 − pi)2Qi(p) + p2

i ∑
j ̸=i

Qj(p)

)
dWt (11)259

where Wt is a one-dimensional Wiener process. The first term of Eq. 10 represents the effect260

of natural selection for increased (Malthusian) fitness. Eq. 10 recovers the replicator-mutator261

equation in the infinite population (K → ∞) limit when Qi models mutation and λ is a mutation262

rate (see section S7 in the supplementary). However, finite populations experience a directional263

force dependent on τi(x), the per-capita turnover rate of type i, that cannot be captured in in-264

finite population models (Week et al., 2021; Kuosmanen et al., 2022). This term shows that the265

effect of turnover rates is structurally identical to that of the differential fitness, but it acts in the266

opposite direction - a higher relative τi leads to a decrease in frequency (Notice the minus sign267

before the second term in Eq. 10). For this reason, the effect has been termed ‘noise-induced se-268

lection’ (Week et al., 2021), though the same general idea has also been known under the names269

‘bet-hedging’ and ‘Gillespie effect’ in the evolutionary ecology literature (Gillespie, 1974; Gille-270

spie, 1977; Frank and Slatkin, 1990; Starrfelt and Kokko, 2012; Veller et al., 2017). Noise-induced271

selection acting through the second term of the RHS of Eq. 10 can be heuristically understood as272

a stochastic selection for reduced variance in changes in population density (Box 1).273

The third term on the RHS of Eq. 10 represents potential biasing effects due to the influx of274

individuals of type i in a manner that does not depend purely multiplicatively on the current275

population density xi of type i individuals (for example, through immigration from an external276

population or mutation of other types during birth). Since 1 − 1/KNK is typically very close277

to 1 for medium to large population size (KNK), we see that such influxes of individuals are278

not strongly affected by demographic stochasticity and thus have qualitatively similar effects in279

small, large, and infinite populations.280

Finally, the last term describes the effects of stochastic fluctuations due to the finite size of the281

population and shows the 1/
√

KNK scaling that is typical of demographic stochasticity. Though282

this last term vanishes upon taking probabilistic expectations (and is hence ‘non-directional’ in283

the short term), it may have important consequences on long-term evolutionary trajectories, as284

we illustrate in the next section.285

To complete the description of the system, we also require an equation for the total scaled286

population size NK = ∑ xi. Upon noting that dNK = ∑ dxi and using Eq. 8 for dxi, and upon287

dividing both sides by NK we find288

1
NK

dNK =

[
w(t) + λ

m

∑
i=1

Qi(p)

]
dt +

1√
KNK(t)

[
τ(t) + λ

m

∑
i=1

Qi(p)

]1/2

dWNK
t (12)289
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where WNK
t is a one-dimensional Wiener process and we have used the representation of noise290

terms presented in Supplementary section S5. Note that fitness affects only the deterministic291

term, turnover rate affects only the stochastic term, and potential influxes of individuals due to292

mutations at birth contribute to both the deterministic and the stochastic terms of Eq. 12.293

Eq. 10 and 12 together completely specify the system. Since the influx terms λQi are min-294

imally affected by demographic stochasticity in Eq. 10 and contribute in the same way to both295

terms on the RHS of Eq. 12, we do not expect this term to cause major qualitative differences296

in the evolutionary dynamics of finite vs infinite populations. Keeping the goal of conceptual297

synthesis and clarity in mind, we will therefore omit these terms in all subsequent equations298

presented in the main text by setting λ = 0. However, we carry out all derivations with the influx299

terms intact in the Supplementary sections (S1-S4), which is where we refer the interested reader.300

A special case: Two interacting types301

To illustrate the way stochasticity affects evolutionary dynamics in finite, fluctuating populations,302

we consider the simple case of two interacting types with no additional influx terms in either type303

(i.e. m = 2, λ = 0). Letting p = p1 be the frequency of type 1 individuals in the population, we304

find that in (p, NK) space, our system obeys the equations305

dp =

[
(w1 − w2)p(1 − p)− 1

KNK
(τ1 − τ2)p(1 − p)

]
dt

+
1√

KNK

√
p(1 − p) [τ1 + (τ2 − τ1)p]dWt

(13a)306

307

1
NK

dNK = w(t)dt +

√
τ(t)

KNK(t)
dWNK

t (13b)308

where Wt and WNK
t are one-dimensional Wiener processes. We can now identify the (frequency-309

dependent) selection coefficient s(p, NK) := w1(p, NK) − w2(p, NK) from classic population ge-310

netics. The selection coefficient quantifies the direction and strength of natural selection in the311

system — a positive value of s indicates that type 1 individuals are favored by natural selection,312

and a negative value of s indicates that type 1 individuals are disfavored by natural selection.313

Eq. 13a also motivates the definition of an analogous noise-induced selection coefficient314

κ(p, NK) := τ2(p, NK)− τ1(p, NK) to quantify the direction and strength of noise-induced selec-315

tion. If type 1 has a lower turnover rate, κ(p, NK) > 0, and thus type 1 is favored by noise-induced316

selection.317

With this notation, Eq. 13a becomes318

dp = p(1 − p)
[

s(p, NK) +
κ(p, NK)

KNK

]
dt +

1√
KNK

√
p(1 − p) (τ1 + pκ(p, NK))dWt (14)319
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Box 1: A heuristic for noise-induced selection over small time intervals

One key mechanism through which noise-induced selection can affect evolutionary dy-
namics is by biasing evolutionary trajectories towards types with lower turnover rates,
even if these types have the same (or even lower) fitness than other types in the popula-
tion. Here, we explain this mechanism via an intuitive argument that has the same flavor
as arguments seen in the bet-hedging literature (Gillespie, 1977; Frank and Slatkin, 1990;
Starrfelt and Kokko, 2012). Ignoring influx terms (λ = 0), Eq. 8 becomes

dxi = xiwi(x)dt +

√
xiτi(x)

K
dW(i)

t (i)

To illustrate the idea via an example, imagine a system consisting of two types of individu-
als, 1 and 2, which have equal fitness but unequal turnover rates; without loss of generality,
assume τ1 > τ2. Let us further assume that both types have the same density x0. From Eq.
(9), we see that the infinitesimal mean of population density is given by xiwi(x), whereas
the infinitesimal variance is given by xiτi(x)/K. Thus, in our example, though the two
types of individuals have the same expected change in population density, type 1 individuals
have a greater variance in the changes in density than type 2 individuals.
Since evolution is defined as changes in trait frequencies, we transform variables from
population density to trait frequency to see how differential variance affects evolutionary
trajectories. This is done via the transformation

pi =
xi

xi + ∑
j ̸=i

xj
for any fixed i ∈ {0, 1, 2, . . . , m}, (ii)

Observe now that frequency (pi) is a concave function of density xi (Eq (ii)). Due to concav-
ity, equivalent changes in density do not correspond to equivalent changes in frequency.
Instead, a result mathematically known as Jensen’s inequality and diagrammatically
represented in figure 2 applies.

Note that an increase in density leads to a relatively smaller increase in frequency, whereas
an equivalent decrease in density leads to a larger decrease in frequency. This implies that
stochastic reductions in density have a higher cost (decrease in frequency) than the benefits
(increase in frequency) conferred by a numerically equivalent increase in density (Fig. 2).
Thus, variance in the density process leads to a net cost in frequency space, and all else
being equal, a greater variance comes with a greater cost. Types with lower turnover rates
(corresponding to lower infinitesimal variance in Eq. (i)) are thus favored.

320
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Figure 2: A diagrammatic representation of the consequences of demographic stochasticity when total
population size can vary. The grey curve represents the transformation from population densities to trait
frequencies via Eq. (ii). The ellipses are representations of possible changes in population composition for two
types with the same fitness and same initial density, but different variances (yellow > blue). The center of
the ellipse represents the infinitesimal mean of the density process, the major axis captures the infinitesimal
variance, and the colored region is thus representative of all possible changes given that an event (birth or
death) has occurred. Reductions in density have a stronger effect on frequency than increases in density, and
due to this, the expected frequency (centers of ellipses on the y-axis) after an event has occurred is less than
the initial frequency p0 even if the expected density (centers of ellipses on the x-axis) coincides with the initial
density x0. Types with a larger variance in the density process (yellow ellipse in the figure) experience a greater
reduction in expected frequency relative to types with a lower variance (blue ellipse). Similar figures, with
the X and Y axes being absolute fitness and relative fitness respectively, appear in expositions of bet-hedging
(e.g. Frank and Slatkin, 1990; Starrfelt and Kokko, 2012); In our figure, the axes are population density and
trait frequency respectively.

The argument we provide here is particular to populations of non-constant size. To see this,
assume that the total (scaled) population size ∑i xi is a constant N > 0. The transformation
in Eq. (ii) then becomes

pi =
xi

xi + ∑
j ̸=i

xj
=

xi

N
(iii)

and is now simply a linear re-scaling of xi rather than a concave function. The asymmetry
between increases in density and decreases in density observed in Fig. 2 thus disappears.
In other words, the mechanism that we identified above no longer works!

321

14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


where we see that the selection coefficient s(p, NK) affects the dt term of Eq. 14, and the322

noise-induced selection coefficient κ(p, NK) affects both the dt and dWt terms. Note that fitness323

only enters into the population dynamics via the selection coefficient s, whereas turnover also324

appears via τ1 in the second term on the RHS of Eq. 14. In other words, only the relative fitness325

or the difference w1 −w2, but not the absolute value of the fitness wi, matters for the deterministic326

dynamics. In contrast, the absolute value of the per-capita turnover rate does affect the stochastic327

dynamics of the system via the second term on the RHS of Eq. 14.328

Noise-induced selection can also affect the long-term behaviour of the population dynam-329

ics through the second term on the RHS of Eq. 14 due to turnover-dependent stochastic ef-330

fects (McLeod and Day, 2019a). Let m(p) be the probability density function associated with331

the quasi-stationary distribution of the stochastic process defined by Eq. 14. Informally, if we332

restrict ourselves to situations in which neither type has reached fixation or gone extinct in the333

population, m(p)dp describes (upto a normalization constant) the probability of observing a trait334

frequency in the interval (p, p + dp) for a very small value of dp. In supplementary section S6,335

we show (Eq. S80) that the quasi-stationary density m(p) obeys the equation:336

dm
dp

= m(p)
[

2p − 1
p(1 − p)︸ ︷︷ ︸

Anti-symmetric
about p = 0.5

+ 2
E(p)
V(p)︸ ︷︷ ︸

Same sign
as first term

on RHS of Eq.14

− 1
V(p)

dV
dp︸ ︷︷ ︸

Contributions from
second term

on RHS of Eq. 14

]
(15)337

where338

E(p, NK) = s(p, NK) +
1

KNK
κ(p, NK) (16a)339

V(p, NK) =
1

KNK
(τ1(p, NK) + pκ(p, NK)) (16b)340

The sign of dm/dp tells us whether type 1 is favored in the stationary distribution (positive341

meaning that type 1 is favored), and points at which dm/dp = 0 tell us about the most likely342

and/or least likely value of p in the stationary distribution (McLeod and Day, 2019a; Majumder et343

al., 2021). The first term on the RHS of 15 is anti-symmetric about p = 0.5 and thus uninteresting344

on its own for determining the sign of dm/dp as a function of p.345

The second term of Eq. 15 represents the balance between classical selection and a form of346

noise-induced selection that is visible over short timescales (see Box 1). Since both s and κ are347

O(1) functions, natural selection will tend to dominate E(p) when the total population size KNK348

is large. Additionally, if s and κ are of similar magnitude (i.e. the strength of natural selection is349

comparable to the strength of the Gillespie effect), natural selection will still dominate the sign350

of E(p) since the total population size KNK must be greater than 1. However, noise-induced351

selection in this form can qualitatively affect evolutionary dynamics if differences in Malthusian352
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fitnesses are close to zero (i.e. natural selection is weak, s ≈ 0) or if total population size KNK is353

small. We will also show this explicitly using an example in the next section.354

Eq. 15 also tells us that the ‘Gillespie effect’ explained in Box 1 is not the only way in which355

noise-induced selection can affect evolutionary dynamics over long timescales: Instead, the long-356

term behaviour of finite population systems is also profoundly affected by the ‘noise’ terms in357

Eq. 14, as captured by the last term on the RHS of Eq. 15. In particular, even when the first358

term on the RHS of Eq. 14 vanishes or acts in the same direction as classical selection (i.e. the359

‘Gillespie effect’ is weak or absent), the long-term behavior of finite populations may still system-360

atically differ from infinite population predictions, in particular possibly ‘reversing’ the direction361

of evolution, if dV/dp is non-zero. For example, type 1 individuals can be overrepresented at362

equilibrium even if s + κ/KNK < 0 (meaning that the first term on the RHS of 14 favors type363

2 individuals) as long as dV/dp is sufficiently negative (McLeod and Day, 2019a). As an aside,364

note that 1/VdV/dP could also equivalently be written as the derivative of log(V) with respect365

to p, and thus represents the strength and direction of frequency dependence of log(V). Since366

V[dp] = p(1 − p)V(p) from Eq. 14, log(V) can be interpreted as being proportional to the log-367

arithm of the variance in the changes in the trait frequency dp. This term thus captures the368

contributions of stochastic fluctuations/‘noise’ in the trait frequency changes dp and can be in-369

terpreted as ‘selecting’ for reduced variance in the change in trait frequencies dp, whereas the370

‘Gillespie effect’ is a selection for reduced variance in the change in population densities. To the371

best of our knowledge, this effect was first explicitly recognized in the literature by McLeod and372

Day (2019a) in the context of social evolution.373

Remarkably, in the case where natural selection does not operate (s = 0), if τ1 and κ are374

independent of the total population size KNK, so is the stationary distribution. This can be seen375

by noting that when s = 0, the total population size KNK affects the dynamics only through a376

pre-factor of 1/KNK that occurs in both E(p) and V(p). It therefore disappears in the ratio E/V.377

Thus, unlike the classic results regarding the relative strengths of natural selection and genetic378

drift, the total population size does not affect the relative strengths of noise-induced selection and379

genetic drift — instead, it is the difference in turnover rates κ and the frequency-dependence of380

V(p) that determine whether the stationary distribution favors one type over the other. A similar381

observation has been made in the context of life-history theory (Shpak, 2005).382

Noise-induced selection clearly disappears in the infinite population limit (K → ∞). Addi-383

tionally, we can now make our claim from Box 1 that noise-induced selection is particular to pop-384

ulations of non-constant total population size precise: If the total population size KNK = K ∑j xj385

is a constant, the additional stochastic term introduced by Itô’s formula in the derivation carried386

out in S2 vanishes. Instead, simply dividing the equation for species densities (Eq. 8) by the387

(now constant) total population size directly provides the complete dynamics of the system in388

frequency space. The deterministic part of Eq. 8 depends only on the fitness wi and influx terms389

but does not depend on turnover rate τi. We can therefore also conclude that noise-induced selec-390
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tion through the Gillespie effect is particular to non-constant populations whose total population391

size KNK changes stochastically depending on the population composition x(t).392

An example with two competing types393

To illustrate when noise-induced selection can be important for population dynamics, we use a394

simple biologically motivated example in this section. Several abiotic factors such as temperature395

and pH are known to be ecological ‘rate modulators’ that affect either the birth rate or death rate396

of organisms, with obvious consequences for evolutionary dynamics (Fronhofer et al., 2023).397

To see how demographic stochasticity may affect the effect of ecological rate modulators on398

evolutionary dynamics, consider here two competing phenotypes, which we denote by 1 and 2.399

Though we stick to this ‘rate modulation’ language henceforth, another potential interpretation400

of the model we study below comes from epidemiology: In this case, the two types can be401

thought of as two competing strains of pathogens, a ‘rate modulator’ that affects birth rates can402

be thought of as affecting transmission rate, and a ‘rate modulator’ that affects death rates can403

be thought of as affecting virulence (Parsons et al., 2018). We consider the case where type 1404

is affected by the ecological rate modulator but type 2 is not. For simplicity, we assume the405

population is closed with no mutations during birth (i.e. λ = 0). Below, we use p to denote the406

frequency of type 1 individuals in the population.407

For pedagogical clarity, we assume that rate modulation occurs by simply shifting the birth408

and/or death rate by a constant. In equations, this can be modelled via the relations:409

b(ind)
1 (p, NK) = b(ind)

2 (p, NK) + ϵb (17a)410

411

d(ind)
1 (p, NK) = d(ind)

2 (p, NK) + ϵd (17b)412

where ϵb and ϵd are real numbers describing the effect of the ecological rate modulator on the413

birth and death rates respectively. Using the definitions of s and κ, we find414

s(p, NK) = ϵb − ϵd (18a)415

416

κ(p, NK) = −[ϵb + ϵd] (18b)417

Note that if ϵb = 0, ϵd < 0, both s and κ are positive, whereas if ϵb > 0, ϵd = 0, s > 0 but418

κ < 0. In other words, if type 1 has a decreased death rate (virulence in the epidemiological case)419

but identical birth rate relative to type 2, type 1 is favored by both natural selection and noise-420

induced selection. On the other hand, if type 1 has an increased birth rate (transmission rate in421

the epidemiology case) but an identical death rate relative to type 2, type 1 is favored by natural422

selection but disfavored by noise-induced selection. Thus, all else being equal, reducing the423

death rate is generically more favorable than increasing the birth rate by an analogous amount,424
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an observation that has been made in finite population models in epidemiology (Parsons et al.,425

2018), social evolution (McLeod and Day, 2019a), life-history evolution (Alexander and Wahl,426

2008), and cancer biology (Raatz and Traulsen, 2023).427

For the rest of this example, we assume that ϵb > 0, ϵd > 0, i.e. that type 1 has both an428

increased birth rate and an increased death rate compared to type 2. We may now ask, when is429

the outcome of evolution different from that expected by infinite population dynamics?430

Noise-induced selection in the absence of natural selection431

First, consider the situation ϵb = ϵd = ϵ. This corresponds to the two types having the same432

growth rate, but type 1 having a faster pace of life than type 2. The selection coefficient and433

noise-induced selection coefficient are434

s(p, NK) = 0 (19)435

κ(p, NK) = −2ϵ (20)436

Thus, as expected, natural selection does not operate in the system. In the infinite population437

limit, natural selection is the only force that affects population dynamics and we thus expect any438

initial frequency p0 of type 1 individuals to remain unchanged in the population (to see this,439

take K → ∞ in Eq. 14). Over short timescales, the effects of demographic stochasticity can be440

observed by looking at the expected change in frequency E[dp]. Using Eq. 14 and substituting441

the functional forms given by Eq. 18, we find442

d
dt

E[p] = E

[
κ(p, NK)

NK
p(1 − p)

]
= − 2ϵ

KNK
E[p(1 − p)] (21)443

Since the RHS of Eq. 21 is always negative for p ∈ (0, 1), we can infer that if the system begins444

at any initial frequency p0 ∈ (0, 1), the proportion of type 1 individuals is expected to decrease.445

If ϵb = ϵd, the ecological rate modulator is thus detrimental to the evolutionary fate of type446

1 individuals over short time scales in finite populations, despite infinite population models447

predicting neutrality. This result is a manifestation of the ‘fast’ mechanism of noise-induced448

selection via the Gillespie effect from Box 1: All else being equal, a faster pace of life comes with449

a greater variance in change of population density within a given time interval since there are450

simply more stochastic birth/death events taking place.451

However, the evolutionary fate over long timescales depends not only on the expected change452

of frequency alone but also on the variance in the change of frequencies. This stochastic effect,453

captured by the dW term in Eq. 14, depends on the functional form of τ1(p, NK) (and not merely454

the difference κ = τ2 − τ1), which we have not yet specified in our model (Eq. 17). For simplicity,455
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let us assume that the turnover rates τi have linear frequency dependence. Specifically, let us456

assume τ1 = bp + c, where p is the frequency of type 1 individuals and b and c are suitable457

constants. Since we would like κ to still be given by Eq. 20, this automatically specifies τ2 as458

τ2 = bp + c − 2ϵ. Thus, we assume τ1 and τ2 change in the same direction (increase or decrease)459

as the frequency of type 1 individuals increases.460

The probability of observing a population in which the trait frequency is p can be described461

via the so-called ‘quasi-stationary density’ (speed measure). The quasi-stationary density de-462

scribes the probability of observing the population in a given configuration (p, NK) conditioned463

on non-extinction of either type (Supplementary section S6). In our example, we can derive an464

exact expression for the quasi-stationary distribution. We present this solution in Supplementary465

section S9, and only illustrate the key points here via Figure 3.466

Figure 3: Two distinct noise-induced effects on evolutionary dynamics. A. If the magnitude of
the noise-induced selection coefficient κ is large relative to the intrinsic turnover rate c, the fast
mechanism of noise-induced selection for reduced per-capita variance operates. Parameters are
chosen such that V(p) is not frequency-dependent (blue: ϵ = 0.5, b = 1, c = 10; red: ϵ = 0.5, b =
1, c = 0.5). B. The stationary distribution can also be biased if V(p) = τ1 + pκ = τ1 − 2ϵp is
frequency-dependent. This slower mechanism of noise-induced selection favors the type that
reduces V(p). Parameters in this panel are chosen such that the strength of the fast mechanism
(Gillespie effect) is negligible (blue: ϵ = 0.025, b = 0.05, c = 10; green: ϵ = 0.025, b = 50, c = 10;
red: ϵ = 0.025, b = −8.5, c = 10)

Figure 3 illustrates two distinct ways in which ‘noise-induced selection’ can manifest in finite,467

fluctuating populations. If dynamics are truly neutral (in the sense of the two types being exactly468

equivalent) and the system begins with p = 0.5, then both types are equally likely to increase/de-469

crease. The quasi-stationary density is thus equal to 1/p(1− p) (up to a constant). Noise-induced470
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effects can bias this distribution in two distinct ways (Box 2): (1) The noise-induced selection co-471

efficient κ can bias the expected trajectory over short timescales, eventually leading to a bias in472

the stationary distribution. Since this effect can be observed over short timescales as deviations of473

dp/dt from the expected trajectory, we refer to it as the ‘fast’ mechanism of noise-induced selec-474

tion. The fast mechanism can be identified with the Gillespie effect from bet-hedging theory and475

is a selection for reduced variance in density change dxi. Since κ = −2ϵ < 0, the fast mechanism476

always favors the type with the slower pace of life (Fig. 3A). (2) A second noise-induced effect477

appears only over long time scales through a biasing of the stationary distribution via the last478

term of Eq. 15. We thus call it a ‘slow’ mechanism of noise-induced selection. For our example,479

we can calculate480

V(p) = τ1 + pκ = bp + c + pκ481

⇒ dV
dp

= b − κ (22)482

Equation 22 tells us that this slower mechanism favors type 1 if b < κ, type 2 if b > κ, and does483

not operate if b = κ. Thus, noise-induced selection through the slow mechanism may act in the484

same direction or the opposite direction of noise-induced selection through the fast mechanism485

(the ‘Gillespie effect’) based on the details of the frequency-dependence of the per-capita turnover486

rates (Fig 3B).487

Noise-induced selection in the presence of natural selection488

Consider now instead a situation in which the rate modulator affects the birth rate more than489

it does the death rate (i.e. ϵb > ϵd > 0). In this case, the selection coefficient s in Eq. 18 is490

always positive, and thus natural selection always favors type 1 individuals. As before, noise-491

induced selection may affect evolutionary dynamics in two distinct ways. First, noise-induced492

selection may invert the direction of the expected trajectory E[dp/dt] via the fast mechanism.493

Noise-induced selection may also bias the stationary distribution towards certain types through494

the slow mechanism of selection for reduced variance in dp. We examine the two possibilities495

one by one.496

Since s > 0, we can use Eq. 14 to say the expected trajectory is in the opposite direction of497

infinite population predictions if s + κ/KNK < 0. Using Eq. 18, we see that this is equivalent to498

ϵb − ϵd −
1

KNK
(ϵb + ϵd) < 0 ⇒

(
1 − 1

KNK

)
ϵb <

(
1 +

1
KNK

)
ϵd499

⇒ ϵb

ϵd
<

KNK + 1
KNK − 1

(23)500
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Using inequality 23 in Eq. 18a, we can arrive at the inequality501

s = ϵd

(
ϵb

ϵd
− 1
)
< ϵd

(
KNK + 1
KNK − 1

− 1
)

502

⇒ s(KNK − 1) < 2ϵd (24)503

Thus, noise-induced selection can reverse the expected trajectory of evolutionary dynamics when504

the product s(KNK − 1) is sufficiently small, i.e. when either selection is weak (s is small), popula-505

tions are small (KNK is small), or both.506

We now also examine the contributions of the noise terms to the stationary distribution. We507

see from Eq. 15 that we can say noise-induced selection favors type 1 through the noise term508

when dV/dp < 0. Using the definition of V from Eq. 16b and substituting the functional forms509

given by Eq. 18, we see that dV/dp < 0 is equivalent to510

dτ1

dp
< ϵb + ϵd (25)511

If τ1 is a constant, i.e. the per-capita birth rates b(ind)
1 and d(ind)

1 do not depend on population512

composition, inequality 25 will automatically be satisfied as long as there is some rate modulation513

in the system (i.e. ϵb and ϵd are not both 0). If τ1 is frequency dependent, 25 is satisfied whenever514

τ1 exhibits negative frequency dependence, though it may also be satisfied if τ1 exhibits weak515

positive frequency dependence. We do not explore the effects of noise-induced selection on516

the stationary distribution further for the sake of conciseness. However, we note that since we517

already studied the behaviour of E(p) above, it is now straightforward to determine from Eq.518

15 when this latter effect combines with E(p)/V(p) to make the RHS of Eq. 15 positive. In519

Supplementary section S10, we provide an example system in which noise-induced selection520

can never act through the fast mechanism to reverse the expected trajectory E[dp/dt], but may521

nevertheless affect long term evolutionary trajectories through the slow mechanism.522

Box 2: Two distinct non-neutral effects of demographic stochasticity

Our equations reveal that noise-induced selection, or directional effects of demographic
stochasticity, can affect evolutionary dynamics through two distinct mechanisms. In this
box, we provide a synthesis of the connections and delineations between the two mecha-
nisms.

1. The fast mechanism selects for reduced variance in changes in population den-
sity (Gillespie, 1974; Gillespie, 1977). Noise-induced selection, in this case, appears
in the ‘deterministic’ term (dt term) of the replicator-mutator equation (Eq. 10) and
is apparent over both short (‘ecological’) timescales as well as long (‘evolutionary’)

523
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timescales as a systematic deviation of the expected trajectory E[dp/dt] from the infi-
nite population prediction. The fast mechanism can be identified with the ‘Gillespie
effect’ from the bet-hedging literature (Gillespie, 1974) and is obtained as a balance
between natural selection for increased ecological growth rate and a stochastic se-
lection for reduced variance in changes in population densities (see Box 1). This
effect is thus a version of classical bet-hedging (Frank and Slatkin, 1990; Starrfelt and
Kokko, 2012) in an explicitly demographic, dynamical context. Noise-induced selec-
tion through the fast mechanism is most apparent when natural selection is weak or
absent, populations are small, or both. Non-constant total population size is essential
for this effect to operate in the case of constant external environments (see Box 1).

2. The slow mechanism selects for reduced variance in changes in trait fre-
quency (McLeod and Day, 2019a). Noise-induced selection in this case appears in the
‘stochastic’ term (dW term) of the replicator-mutator equation (Eq. 10) and is only
apparent over very long (‘evolutionary’) timescales as a systematic bias or shift in
the stationary distribution. The slow mechanism is a result of frequency-dependence
in the variance of changes in trait frequencies and selects those types that are as-
sociated with lower variance (Fig 3B). The strength of slow noise-induced selection
varies inversely with (the square root of) population size, and the direction of the
effect depends on the frequency-dependence of the per-capita turnover rates τi.

Unlike natural selection, the balance between noise-induced selection (through either
mechanism) and genetic drift in the absence of natural selection does not depend on the
total population size: Instead, it is determined by the details of the demographic processes
occurring in the population: If different types have different turnover rates, the fast mech-
anism operates, and if some types are associated with lower variance in the change in trait
frequencies, the slow mechanism operates.
We provide a simple example of these effects via a model of variation in the pace of life
in the main text, and the results are summarized in Fig 3. Our figure highlights that
the two noise-induced effects may operate in isolation or simultaneously, and may either
supplement (red curve in Fig. 3A and green curve in 3B) or oppose (red curves in 3A
and 3B) each other. In Supplementary section S10, we also provide an example in which
noise-induced selection can never reverse the direction of evolution predicted by natural
selection through the fast mechanism but may nevertheless do so through the slow mecha-
nism. In Supplementary section S11, we provide an example of a stochastic Lotka-Volterra
competition model with both natural selection and mutation in which noise-induced se-
lection acting via the fast mechanism can reverse the direction of evolution predicted by
natural selection-mutation balance.

524
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Price equation for finite fluctuating populations525

We show that the statistical population mean f of any type-level quantity f (e.g. phenotype,526

fitness) changes over time according to the equation (see Supplementary section S3)527

d f = Cov(w, f )dt︸ ︷︷ ︸
Classical
selection

− 1
KNK(t)

Cov(τ, f )dt︸ ︷︷ ︸
Noise-induced selection

(fast mechanism)

+

(
∂ f
∂t

)
dt︸ ︷︷ ︸

Ecological
feedbacks

+
1√

KNK(t)
dW f︸ ︷︷ ︸

Stochastic
fluctuations

(26)528

where529

dW f :=

(√
Cov(τ,

(
f − f

)2
) + τσ2

f

)
dWt (27)530

where is a stochastic integral term describing un-directed stochastic fluctuations (see Eq. S64 in531

Supplementary section S5). Here, Wt is a Wiener process that is not the same Wiener process that532

appears in Eq. 10.533

Eq. 26 recovers the Price equation in the infinite population (K → ∞) limit (see section S7).534

Each term in Eq. 26 lends itself to a simple biological interpretation. The first term, Cov(w, f ),535

is well-understood in the classical Price equation and represents the effect of natural selection. If536

the trait and the fitness are positively correlated, the mean trait value in the population increases537

due to the effect of selection. The second term, Cov(τ, f )/KNK(t) is the effect of noise-induced538

selection on the population mean via the fast mechanism in finite fluctuating populations. Bi-539

ologically, the Cov(τ, f ) term (with negative sign) describes a biasing effect due to differential540

turnover rates between different types; if the trait is positively correlated with turnover rate,541

mean trait value will reduce.542

The third term of Eq. 26 is relevant in both finite and infinite populations whenever fi can543

vary over time and represents feedback effects on the quantity fi of the ith species over short544

(‘ecological’) time-scales. Such feedback could be through a changing environment, phenotyp-545

ic/behavioral plasticity, or any manner of other ‘ecological’ phenomena. This is the term that546

captures eco-evolutionary feedback loops.547

Finally, the last term of Eq. 26 describes the role of stochastic fluctuations. Recall that the548

square of this term corresponds to the infinitesimal variance of the change in the mean value549

d f of the quantity f in the population. ( fi − f )2 is a measure of the distance of fi from the550

population mean f . The Cov(τ,
(

f − f
)2
) term thus tells us that if turnover τi of the ith type551

covaries positively with the distance of fi from the population mean (i.e. individuals with more552

extreme f have higher turnover rates), the population experiences a greater variance in d f , i.e.553

the change in the mean value of f over infinitesimal time intervals. The τσ2 term tells us that554

even if τ and f do not covary, there is still some variance in d f , given now by the product555

of the mean turnover rate τ with the standing variation σ2
f in the quantity f . As we shall see556
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in the next section, this is a manifestation of neutral genetic/ecological drift. Just as in the557

replicator-mutator equation, stochastic fluctuations through dW f can profoundly affect the long-558

term behaviour (stationary distribution) of f via the ‘slow’ mechanism of noise-induced selection559

if the term inside the square root of Eq. 27 depends on f . Note that unlike for the replicator560

equation, the SDE in Eq. 26 is one-dimensional regardless of the number of traits (m), and thus561

the stationary distribution of the mean value f can always be studied the way we studied Eq. 14.562

Fisher’s fundamental theorem for finite fluctuating populations563

Two particularly interesting implications of Eq. 26 are realized upon considering the time evolu-564

tion of mean fitness and mean turnover rate. First, upon substituting f = w in Eq. 26 and taking565

expectations over the underlying probability space, we obtain:566

E

[
dw
dt

]
= E

[
σ2

w
]

︸ ︷︷ ︸
Fisher’s

fundamental
theorem

− E

[
σ2

b(ind) − σ2
d(ind)

KNK(t)

]
︸ ︷︷ ︸

Noise-induced
selection

+ E

[
∂w
∂t

]
︸ ︷︷ ︸
Eco-evolutionary

feedbacks to fitness

(28)567

The first term, σ2
w, is the subject of Fisher’s fundamental theorem (Frank and Slatkin, 1992; Kokko,568

2021), and says that in infinite populations, the rate of change of mean fitness in the population569

is proportional only to the standing variation in fitness σ2
w if fitness at the type level (wi) does570

not change over time. The second term of Eq. 28 is a manifestation of noise-induced selection571

acting via the fast mechanism and is particular to finite populations. Finally, the last term arises572

in both finite and infinite populations whenever wi can vary over time (Kokko, 2021), be it573

through frequency-dependent selection, phenotypic plasticity, varying environments, or other574

ecological mechanisms, and represents feedback effects on the fitness wi of the ith species over575

short (‘ecological’) time-scales. Eq. 28 recovers the standard version of Fisher’s fundamental576

theorem in the infinite population (K → ∞) limit (see section S7).577

The demographic origins of fitness differences induce quantitative corrections to Fisher’s funda-578

mental theorem in finite populations579

Since w = b(ind) − d(ind) by definition, Eq. 28 can alternatively also be written as580

E

[
dw
dt

]
= E

[(
1 − 1

KNK

)
σ2

b(ind)

]
︸ ︷︷ ︸

Changes in mean fitness
due to differential birth rates

+ E

[(
1 +

1
KNK

)
σ2

d(ind)

]
︸ ︷︷ ︸

Changes in mean fitness
due to differential death rates

+ E

[
∂w
∂t

]
︸ ︷︷ ︸
Eco-evolutionary

feedbacks to fitness

(29)581
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Eq. 29 redescribes variation in fitness in terms of the more fundamental processes of birth and582

death. Eq. 29 also tells us that variation in death rates leads to a slightly greater rate of increase in583

mean fitness than an equivalent variation in birth rates. For example, if individuals differ in birth584

rates alone (i.e. σ2
d(ind) = 0, σ2

w = σ2
b(ind)), Eq. 29 predicts that the rate of mean fitness in the absence585

of eco-evolutionary effects is given by E[(1 − 1/KNK)σ
2
w]. On the other hand, if individuals586

instead differ in death rates alone, (i.e. σ2
b(ind) = 0, σ2

w = σ2
d(ind)), the rate of change of mean fitness587

in the absence of eco-evolutionary effects is given by E[(1+ 1/KNK)σ
2
w], which is a slightly faster588

rate of convergence. Note, however, that these are only minor quantitative corrections to Fisher’s589

fundamental theorem and the two cases exhibit the same qualitative behaviour.590

An analog of Fisher’s fundamental theorem for the mean turnover rate of the591

population592

Carrying out the same steps in deriving Eq. 28 with f = τ in Eq. 26 yields a dynamical equation593

for the evolution of mean turnover rates and reads594

E

[
dτ

dt

]
= E

[
σ2

b(ind) − σ2
d(ind)

]
︸ ︷︷ ︸

Classical selection
effects

− E

[
σ2

τ

KNK(t)

]
︸ ︷︷ ︸

Noise-induced selection
effects

+ E

[
∂τ

∂t

]
︸ ︷︷ ︸
Eco-evolutionary
feedbacks to τi

(30)595

This equation has been derived by Kuosmanen et al., 2022 using an alternative mathematical596

approximation scheme. The effect of classical natural selection on the evolution of mean turnover597

depends on whether birth rates or death rates have greater variation in the population, as cap-598

tured by the first term — if birth rates have greater variance than death rates, then mean turnover599

increases due to natural selection, whereas if birth rates have lesser variance than death rates,600

mean turnover decreases due to natural selection. The second term of Eq. 30 appears only in601

finite populations and is exactly analogous to the σ2
w term that appears in Fisher’s fundamental602

theorem. This term says that noise-induced selection always reduces mean turnover in the pop-603

ulation, with the rate of reduction of the mean turnover rate being proportional to the standing604

variation in turnover rates σ2
τ . Finally, the last term on the RHS of Eq. 30 quantifies the effect of605

eco-evolutionary feedback via changes in the turnover of each type over time.606

The fundamental equation for the population variance via a generalization of an607

equation for variance of type-level quantities608

Eq. 26 is a general equation for the mean value of an arbitrary type level quantity f in the609

population. In many real-life situations, we are interested in not just the population mean, but610

also the variance of a quantity in the population. In Supplementary section S4, we show that the611
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statistical variance of any type level quantity f obeys612

dσ2
f = Cov

(
w, ( f − f )2

)
dt︸ ︷︷ ︸

Classical
selection

− 2
KNK

Cov
(

τ, ( f − f )2
)

dt︸ ︷︷ ︸
Noise-induced selection

(fast mechanism)

− 1
KNK

τσ2
f dt︸ ︷︷ ︸

Genetic/Ecologial
drift

+ 2Cov
(

∂ f
∂t

, f
)

dt︸ ︷︷ ︸
Ecological
feedbacks

+
1√

KNK(t)
dWσ2

f︸ ︷︷ ︸
Stochastic

fluctuations

(31)613

where614

dWσ2
f

:=

√
Cov

(
τ,
(

f − f
)4
)
+ τ(σ2

f )
2 dWt (32)615

is a stochastic integral term measuring the (non-directional) effect of stochastic fluctuations that616

vanishes upon taking an expectation over the probability space (see Eq. S66 in Supplementary617

section S5). As before, we use Wt to denote a generic Wiener process — the Wt that appears in618

Eq. 31 is not necessarily the same process that appears in either Eq. 10 or Eq. 26. The stochastic619

dependencies between the various Wiener processes can be studied using a relation discussed in620

Supplementary section S5.621

Once again, terms of Eq. 31 lend themselves to straightforward biological interpretation.622

The quantity ( fi − f )2 is a measure of the distance of fi from the population mean value f ,623

and thus covariance with ( f − f )2 quantifies the type of selection operating in the system: A624

negative correlation is indicative of stabilizing or directional selection, and a positive correlation625

is indicative of disruptive (i.e. diversifying) selection (Rice, 2004, Chapter 6; Lion, 2018). An626

extreme case of diversifying selection for fitness occurs if the mean fitness of the population627

is at a local minimum but fi ̸≡ f (i.e. the population still exhibits some variation in f ). In628

this case, if the variation in f is associated with a variation in fitness, then Cov(w, ( f − f )2)629

is strongly positive and the population experiences a sudden explosion in variance, causing the630

emergence of polymorphism in the population. If Cov(w, ( f − f )2) is still positive after the initial631

emergence of multiple morphs, evolution eventually leads to the emergence of stable coexisting632

polymorphisms in the population - this phenomenon is a slight generalization of the idea of633

evolutionary branching that occurs in frameworks such as adaptive dynamics (Doebeli, 2011).634

The Cov (∂ f /∂t, f ) term represents the effect of eco-evolutionary feedback loops due to changes635

in f at the type level.636

Finally, the last term on the RHS of Eq. 31 describes the role of stochastic fluctuations.637

The square of this term is the infinitesimal (probabilistic) variance of the changes in statistical638

variance dσ2
f of f . Just like in the stochastic replicator-mutator and Price equations, this term639

can profoundly affect the long-term behaviour (stationary distribution) of σ2
f through the slow640
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mechanism of noise-inducec selection. Just like the stochastic Price equation, the SDE in Eq. 31 is641

always one-dimensional, and thus the stationary distribution of the variance σ2
f can also always642

be studied the way we studied Eq. 14.643

In the case of one-dimensional quantitative traits, an infinite-dimensional version of Eq. 31644

has recently been rigorously derived (Week et al., 2021) using measure-theoretic tools under645

certain additional assumptions (See equation (21c) in Week et al., 2021). Taking expectations over646

the probability space in Eq. 31 also recovers an equation previously derived and used (Débarre647

and Otto, 2016) in the context of evolutionary branching in finite populations as a special case648

(Equation A.23 in Débarre and Otto, 2016 is equivalent to our Eq. 31 for their choice of functional649

forms upon converting their change in variance to an infinitesimal rate of change i.e. derivative).650

An infinite population (K → ∞) version of Eq. 31 also appears in Lion, 2018 (see section S7 in651

the online supplementary) as a dynamic version of earlier, dynamically insufficient equations for652

the change in trait variation over a single generation (For example, see Eq. 6.14 in Rice, 2004).653

Loss of trait variation in populations experiencing genetic drift654

The τσ2
f term quantifies the loss of variation due to stochastic extinctions (i.e. demographic655

stochasticity) and thus represents the classic effect of neutral genetic (or ecological) drift in finite656

populations. To see this, it is instructive to consider the case in which this is the only force at657

play. Let us imagine a population of asexual organisms in which each fi is simply a label or mark658

arbitrarily assigned to individuals in the population at the start of an experiment/observational659

study and subsequently passed on to offspring — for example, a neutral genetic tag in a part of660

the genome that experiences a negligible mutation rate. Since the labels are arbitrary and have661

no effect whatsoever on the biology of the organisms, each label has the same fitness wi ≡ w and662

per-capita turnover τi ≡ τ, and thus w = w and τ = τ. Note that since every type has the same663

fitness and turnover rate, we have Cov
(

w, ( f − f )2
)
≡ Cov

(
τ, ( f − f )2

)
≡ 0. Since the labels664

do not change over time, we also have Cov (∂ f /∂t, f ) = 0. From Eq. 31, we see that in this case,665

the variance changes as666

dσ2
f = −

τσ2
f

KNK(t)
dt +

1√
KNK(t)

dWσ2
f

(33)667

Taking expectations, the second term on the RHS vanishes, and we see that the expected668

variance in the population obeys669

dE[σ2
f ]

dt
= −

(
E

[
τ

KNK

])
E[σ2

f ] (34)670

where we have decomposed the expectation of the product on the RHS into a product of expecta-671

tions, which is admissible since the label f is completely arbitrary and thus independent of both672

τ and NK(t). Eq. 34 is a simple linear ODE and has the solution673
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E[σ2
f ](t) = σ2

f (0)e
−E

[
τ

KNK

]
t (35)674

This equation tells us that the expected diversity (variance) of labels in the population decreases675

exponentially over time. The rate of loss is E
[
τ(KNK)

−1], and thus, populations with higher676

turnover rate τ and/or lower population size KNK lose diversity faster. This is because popula-677

tions with higher τ experience more stochastic events per unit time and are thus more prone to678

stochastic extinction, while extinction is ‘easier’ in smaller populations because a smaller number679

of deaths is sufficient to eliminate a label from the population completely. Note that which label-680

s/individuals are lost is entirely random (since all labels are arbitrary), but nevertheless, labels681

tend to be stochastically lost until only a single label remains in the population. Upon rescaling682

time as t → τt, equation 35 recovers the continuous time version of the loss of heterozygosity683

formula for finite populations from population genetics (Ewens, 2004, Eq. 1.5; Crow and Kimura,684

1970, sections 7.3 and 8.4).685

Discussion686

The central result of our paper is a set of stochastic dynamical equations for changes in trait687

frequencies in the population (Eq. 10) that generalizes the replicator-mutator equation to finite688

populations of non-constant size evolving in continuous time. From this, we derive a general-689

ization of the Price equation (Eq. 26) and Fisher’s fundamental theorem (Eq. 28) to such pop-690

ulations, as well as an equation for changes in population variance of a type-level quantity (Eq.691

31). Starting from an arbitrary density-dependent birth-death process, our framework recovers,692

from first principles, well-known equations of population biology, such as the replicator-mutator693

equation, Price equation, and Fisher’s fundamental theorem, in the infinite population limit (see694

section S7). Our generalised equations also reveal a novel directional evolutionary force termed695

noise-induced selection that emerges, surprisingly, purely from stochastic effects. Noise-induced696

selection can manifest through two distinct mechanisms (Box 2), one that is visible over both697

ecological and evolutionary timescales and one that is only visible over very long (evolution-698

ary) timescales. Several theorists have called for a reformulation of eco-evolutionary dynamics699

starting from stochastic birth-death processes on the grounds that such a formulation is more700

fundamental and mechanistic (Metcalf and Pavard, 2007; Lambert, 2010; Doebeli et al., 2017).701

Our equations provide a starting point for such a reformulation by deriving some fundamen-702

tal equations for the eco-evolutionary dynamics of finite, stochastically fluctuating populations.703

Below, we discuss some potentially fundamental implications of these equations to our under-704

standing of stochastic evolutionary dynamics in finite populations.705
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Finite population effects on eco-evolutionary dynamics706

For finite populations, our stochastic eco-evolutionary equations generically predict a novel di-707

rectional evolutionary force called noise-induced selection that has been previously reported in708

model-specific contexts (Constable et al., 2016; McLeod and Day, 2019a; Parsons et al., 2018).709

This evolutionary force is a consequence of demographic stochasticity and can act through two710

distinct mechanisms (see Box 2): Over short timescales, noise-induced selection manifests as a711

reduction of variance in changes in population density dxi and acts on variation in per-capita712

turnover rate τ, obtained by the sum of birth and death rates, of individuals. This ‘fast’ form of713

noise-induced selection is identifiable with the Gillespie effect (Gillespie, 1974) from bet-hedging714

theory and is detectable as a systematic deviation of the evolutionary trajectory of the system in715

trait frequency space relative to infinite population expectations. The fast mechanism of noise-716

induced selection can occur whenever there is a differential turnover rate τ in the system. Further,717

it always favors types whose per-capita turnover rate is lower than that of the population av-718

erage (Box 1). Noise-induced selection can also act in a much slower fashion, visible only over719

very long timescales, if the variance in the change in trait frequency is itself frequency depen-720

dent. This ‘slow’ mechanism is only visible as a bias in the expected distribution of types over721

very long, evolutionary timescales (the stationary distribution), and favors types whose presence722

causes a reduction in the variance of changes in trait frequency dpi. The fast and slow mecha-723

nisms may either supplement or oppose each other (see the example in the section “An example724

with two competing types”). Both forms of noise-induced selection can qualitatively affect the725

long-term evolutionary trajectory of populations and can even reverse the direction of evolution726

as determined by natural selection.727

These results suggest an intriguing requirement for neutral evolution in finite populations:728

It is not sufficient for the trait in question to be neutral with respect to fitness w alone. Instead,729

we also require the trait to be neutral with respect to noise-induced selection. In other words,730

even in (finite) populations with no differential fitness among traits, there exists a directional731

evolutionary force that may systematically bias the course of evolution. Since noise-induced732

selection can act through two distinct mechanisms (see Box 2 and the example in the section733

“An example with two competing types”), we will see truly neutral evolution (in the sense of734

fixation probability only depending on initial frequency) in finite populations only when three735

conditions are met: no differential fitness (natural selection does not operate), no differential736

turnover rates (noise-induced selection does not operate through the fast mechanism), and no737

frequency dependence in variance of changes in trait frequency (noise-induced selection does not738

operate through the slow mechanism). Systematic deviations from neutrality in the absence of739

fitness differences have been observed in special cases before. Models of cell cycle dynamics find740

that selection favors cell types that periodically arrest their cell cycle (thus reducing per-capita741

turnover rate) relative to non-arresting cells even when their growth rates are equal (Wodarz742
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et al., 2017). Similarly, ecological models find that when species with equal growth rates compete743

in finite, fluctuating populations, the species with a lower death rate outcompetes the one with744

a higher death rate despite the infinite population limit predicting coexistence (Lin et al., 2012;745

Oliveira and Dickman, 2017; Balasekaran et al., 2022). This latter bias towards species with lower746

death rates has sometimes been interpreted as a selection for ‘longevity’ (Lin et al., 2012) or a747

‘slower biological clock’ (Oliveira and Dickman, 2017). Our analysis highlights that such results748

may equivalently be due to noise-induced selection preferentially favoring lower turnover rates.749

Our general SDEs also recover some previous work from social evolution (McLeod and Day,750

2019a) and epidemiology (Parsons et al., 2018; Day et al., 2020) as special cases (Supplementary751

section S8).752

While most evolutionary studies focus on mean traits and frequencies, we have also derived753

an equation for the dynamics of trait variance (Eq. 31) in finite populations. This shows that754

noise-induced selection can also affect the evolutionary dynamics by affecting higher moments755

of the trait distribution. An intriguing application of our variance equation comes from the study756

of evolutionary branching via adaptive dynamics. Evolutionary branching points are attracting757

fixed points in infinite population frameworks like adaptive dynamics (Doebeli, 2011). Since758

evolutionary branching is accompanied by a sudden increase in the variance of the trait in the759

population, it can be studied by looking at the dynamics of trait variance over time (Nordbotten760

et al., 2020); For finite populations, we predict that branching points of adaptive dynamics are761

not attractors due to the second and third terms on the RHS of Eq. 31. This observation could762

generically help explain why finite populations frequently exhibit a lower tendency or take a763

longer time to undergo evolutionary branching compared to infinite population models (Johans-764

son and Ripa, 2006; Claessen et al., 2007; Wakano and Iwasa, 2013; Rogers and McKane, 2015;765

Débarre and Otto, 2016). Indeed, a special case of Eq. 31 has been used to show that evolutionary766

branching is less likely in finite populations in a social evolution model (Débarre and Otto, 2016).767

On the practical side, the existence of noise-induced selection implies that simulation stud-768

ies working with evolutionary individual-based or agent-based models should be careful about769

whether interaction effects are incorporated into birth rates or death rates since this seemingly ar-770

bitrary choice can have unintended consequences due to noise-induced selection, thus potentially771

biasing results (McLeod and Day, 2019a; Kuosmanen et al., 2022). Our results also indicate that772

measuring the growth rate of populations is not, in general, sufficient for accurate prediction/in-773

ference of future trajectories of the relative abundance of a species (or phenotype, allele, etc.)774

from empirical data even in completely controlled environments. Lastly, noise-induced selection775

is particular to fluctuating populations and does not occur in models with fixed population sizes776

such as the Wright-Fisher or Moran models. Taken alongside other theoretical (Lambert, 2010;777

Parsons et al., 2010; Abu Awad and Coron, 2018; Kuosmanen et al., 2022; Mazzolini and Grilli,778

2023) and empirical (Papkou et al., 2016; Chavhan et al., 2019) studies on evolution in fluctuating779

populations, this last point suggests that models which assume fixed total population size, such780
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as Wright-Fisher and Moran, may miss out on important evolutionary phenomena that are only781

seen in finite, populations of non-constant size.782

Connections with other general frameworks783

Our equations generalize Lion’s (2018) general framework of infinite population deterministic784

eco-evolutionary dynamics to finite, fluctuating populations — taking K → ∞ in Eq. 10, Eq.785

26, and Eq. 31 recover equations (6), (11), and (14) in Lion, 2018 respectively. Lion, 2018 has786

pointed out that in the dynamic setting (for infinite populations), the replicator-mutator equation787

is the truly fundamental equation, and equations like the Price equation are best viewed as an788

infinite hierarchy of moment equations for the population mean, population variance, and higher789

moments of a type-level quantity. This is also true in our framework - Eq. 10 is the fundamental790

equation for population dynamics, and equations like Eq. 26 and Eq. 31 can then be derived from791

Eq. 10 through repeated application of Itô’s formula. If we assume that the quantity f follows a792

Gaussian distribution, then the mean and variance completely characterize the distribution, and793

thus, Eq. 10, Eq. 26, and Eq. 31 together specify the complete stochastic dynamics of the system.794

Rice has proposed a stochastic version of the Price equation (Rice, 2020 and references cited795

therein). Like the original Price equation, Rice’s equations are formulated as a general decompo-796

sition of the phenotypic change between two given populations. They are thus the true stochastic797

analog of the original Price equation, whereas our version, Eq. 26, is the analog of Lion’s (2018)798

version of the Price equation in a continuous time, dynamically sufficient setting. Rice’s deriva-799

tions also treat fitness as fundamental, whereas we derive suitable notions of fitness and turnover800

from demographic first principles. As a consequence, the ‘extra’ stochastic term corresponding to801

noise-induced selection that appears in our equations fundamentally emerges from the stochas-802

ticity of the underlying births and deaths of organisms and is thus of ecological/demographic803

origin, whereas the ‘extra’ stochastic term in Rice’s equations emerges from the stochasticity of804

fitness alone when viewed as a random variable (Rice, 2020). It thus need not, to the best of our805

knowledge, correspond to the same effect we identify here.806

At first glance, the idea of an evolutionary force that selects individuals with lower birth and807

death rates over individuals with higher birth and death rates may be reminiscent of ideas from808

life-history evolution such as r vs. K selection (Pianka, 1972; Stearns, 1977), bet-hedging & dor-809

mancy in temporally variable environments (Frank and Slatkin, 1990; Childs et al., 2010; Gremer810

and Venable, 2014; ten Brink et al., 2020), or ‘pace-of-life syndromes’ (Mathot and Frankenhuis,811

2018; Wright et al., 2019). However, it is unclear whether these similarities reflect a deep biological812

principle or whether the semblance is just superficial. For one, incorporating a highly variable813

(non-Poisson) clutch size requires the use of stochastic processes that cannot be expressed in814

terms of the birth-death processes we study in this paper (for example, see Wang et al., 2023).815

Secondly, many models in life-history theory, such as in r vs K selection models or models of the816
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evolution of dormancy, are often primarily concerned with spatio-temporally fluctuating external817

environments, and in such situations, the stochasticity in those models is extrinsic to the popu-818

lation (Stearns, 1977; Childs et al., 2010). We have entirely neglected such extrinsic factors in our819

formalism. If the variation of the environment has some associated stochasticity, the complete820

dynamics of the system would be the result of interactions between two qualitatively different821

forms of noise — extrinsic noise from the environment, and intrinsic noise from the finiteness of822

the population — and can consequently be rather complex and intricate (Gokhale and Hauert,823

2016; Chavhan et al., 2021). Thus, while connecting noise-induced selection with ideas such as824

the pace-of-life syndrome is biologically appealing, it is likely a non-trivial extension and may825

present a promising avenue for future work.826

Our equations reveal how noise-induced effects on the eco-evolutionary dynamics of popu-827

lations of non-constant size can be differentiated into two major, qualitatively different effects828

(Box 2): The dt terms of our SDEs all contain a ‘noise-induced’ term that influences the expected829

trajectory over infinitesimal time intervals dt (The second term on the RHS of Eqs. 10, 26, and 31).830

This term models the expected effects of ‘noise-induced selection’ over very small time intervals831

dt, and has been the object of study in early models of bet-hedging in finite populations (Gille-832

spie, 1974; Shpak, 2005). We can thus identify this ‘fast mechanism’ of noise-induced selection as833

the ‘Gillespie effect’ from the bet-hedging literature (Gillespie, 1974; Gillespie, 1977; see Box 1).834

However, note that due to potential additional influx terms λQi, the quantity τi is not precisely835

equal to the variance in the per-capita growth rate in our model, but is still proportional to it.836

Unlike many classic bet-hedging papers such as Gillespie (1974) and Frank and Slatkin (1990), wi837

and τi (and thus the mean and variance of the change in population density) cannot vary inde-838

pendently in our framework; Instead, both are defined from first principles in terms of birth and839

death rates and are deeply related to each other, as is evident from their definitions (Eqs 3 and840

4). This naturally introduces a tradeoff between increasing w and decreasing τ. Furthermore, the841

variance that is studied in bet-hedging models is typically variance in offspring numbers (Gillespie,842

1977). The variance in Eq. 9b is not variance in offspring numbers, but instead variance in the843

ecological ‘growth rate’ dxi (over an infinitesimal time interval), a quantity that has sometimes844

been called ‘demographic variance’ (Engen et al., 1998; Shpak, 2007).845

Noise-induced selection over infinitesimal time scales via the fast mechanism may also appear846

in the ‘deterministic’ term (dt term) as a deviation from the expected trajectory if we project847

the ecological dynamics onto a ‘slow manifold’ through a separation of timescales argument, a848

common procedure for reducing the dimension of stochastic dynamical systems (Constable et al.,849

2013; Parsons and Rogers, 2017). A change of variables via a projection of the dynamics onto850

a manifold is responsible for the ‘noise-induced effects’ that appear in purely ecological models851

(i.e. models of population densities) where dynamics are projected onto a manifold describing852

populations that are at equilibrium over short timescales (Constable et al., 2016; Chotibut and853

Nelson, 2017; Mazzolini and Grilli, 2023). A change of variables via projection onto a manifold854
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is also at the heart of the stochastic ‘drift-induced selection’ that drives evolutionary transitions855

between male and female heterogamety (XX/XY to ZW/ZZ and vice versa) in stochastic models856

of the evolution of chromosomal sex determination systems (Veller et al., 2017; Saunders et al.,857

2018). In models of sex determination, the projection is onto a manifold describing populations858

in which the sex ratio is 1:1 (Veller et al., 2017; Saunders et al., 2018). Thus, the effects of859

demographic stochasticity in these studies can be identified as manifestations of noise-induced860

selection acting via the fast mechanism (as defined in Box 2).861

There is an entirely different effect of demographic stochasticity that is less evident over short862

timescales but is revealed as a systematic bias in the (quasi-)stationary distribution (see Box 2).863

This latter effect can occur even when the fast mechanism is absent (to see this, set s = −κ/KNK in864

Eq. 14 but let τ1 and κ be frequency-dependent) and is a manifestation of frequency-dependence865

in the variance of the changes in trait frequency dpi. This effect favors changes in frequency that866

lead to a reduction in the (infinitesimal) variance of the frequency process Eq. 10. To the best of867

our knowledge, potential directional biases in the stationary distribution due to noise-induced868

effects were first recognized by McLeod and Day (2019a) in the context of social evolution models869

of the evolution of altruism.870

Since the slow and fast mechanisms of noise-induced selection have distinct origins, are vis-871

ible over different timescales, and may push evolution in different directions, we suggest it is872

helpful to explicitly differentiate between the two mechanisms of noise-induced selection to873

identify which mechanisms are germane to any particular biological population (Box 2). By874

re-deriving some standard equations of population dynamics for finite populations, our paper875

presents a general description of how noise-induced selection through the fast mechanism of876

selection for reduced turnover rates τi and the slow mechanism for reduced variance in changes877

in trait frequency interact with each other as well as with the more well-understood evolution-878

ary forces of natural selection, influx (mutation/migration), and neutral genetic/ecological drift.879

We thus provide a framework with which to approach particular finite population systems and880

systematically determine which evolutionary forces are important in specific contexts.881

The equivalent of our stochastic equations has also recently been derived for quantitative882

traits from a very different starting point using the theory of measure-valued branching pro-883

cesses (Week et al., 2021) — equations (21b) and (21c) in Week et al., 2021 are exactly the m → ∞884

version of our equations for changes in the mean value of a type-level quantity and changes in the885

variance of a type-level quantity respectively for the special case in which the type-level quantity886

is the value of the quantitative trait being studied. A recent preprint (Kuosmanen et al., 2022)887

has also independently arrived at the equivalent of some of our equations using an alternative888

approximation scheme. Using certain discrete time stochastic processes and their approximation889

via techniques reminiscent of numerical stochastic integration, Kuosmanen et al., 2022 have ar-890

rived at our equation for type frequencies (Eq. 10) and the change of mean fitness and turnover in891

the population (Eq. 28 and Eq. 30), and interpreted these equations in the context of life-history892
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evolution. However, unlike in our work, neither of these previous studies explicitly delineates or893

studies the interplay between the two distinct mechanisms (Box 2) through which noise-induced894

selection alters evolutionary dynamics.895

Concluding remarks896

A small but growing body of literature has begun to highlight the surprising and counter-897

intuitive effects of demographic stochasticity in shaping evolutionary outcomes in many ecologi-898

cal scenarios. In this paper, we derive from demographic first principles some general stochastic899

dynamical equations that conceptually unify such previous studies by connecting their dynamics900

to standard equations of population biology such as the replicator equation. Further, the terms901

of the equations we derive lend themselves to simple biological interpretations, recover stan-902

dard equations of evolutionary theory in the infinite population limit, and illustrate two distinct903

mechanisms through which demographic stochasticity can affect evolutionary trajectories in a904

biased manner. The equations we derive thus provide some general insights into how evolution905

should operate in finite, fluctuating populations. Our results show that alongside natural selec-906

tion and neutral genetic drift, finite populations also experience an additional directional force907

(noise-induced selection) that can affect evolutionary trajectories, sometimes even reversing the908

direction of evolution predicted by natural selection. Furthermore, this noise-induced selection909

can operate through either a ‘fast’ mechanism that is visible over short timescales or a ‘slow’910

mechanism that is visible only over very long timescales as a biasing of the stationary distribu-911

tion. To the best of our knowledge, the equations we derive in this paper are the first to showcase912

how noise-induced selection alters some standard equations of population biology. The utility913

of the equations we derive thus lies not (necessarily) in their solutions for specific models, but914

instead in their generality and the fact that their terms help us clearly think about the various evo-915

lutionary phenomena operating in biological populations (Queller, 2017; Lehtonen, 2018; Lion,916

2018; Luque and Baravalle, 2021). We work solely with unstructured populations in this paper,917

thus neglecting any potential effects of groups, sex, age, or space. Future work could potentially918

focus on including these additional features to investigate their effects in amplifying or reducing919

the effects of noise-induced selection.920
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Kuosmanen, T., Särkkä, S., and Mustonen, V. (2022).1065

Turnover shapes evolution of birth and death rates. en. doi: 10.1101/2022.07.11.499527.1066

Lambert, A. (2010). “Population genetics, ecology and the size of populations”. en.1067

In: Journal of Mathematical Biology 60.3, pp. 469–472. issn: 1432-1416.1068

doi: 10.1007/s00285-009-0286-3.1069

38

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

https://doi.org/10.1111/ele.12241
https://doi.org/10.1186/1471-2148-12-61
https://doi.org/10.1016/j.jtbi.2014.06.039
https://doi.org/10.1038/s41567-020-0787-y
https://doi.org/10.1086/507996
https://doi.org/10.1111/evo.13615
https://doi.org/10.1073/pnas.71.9.3377
https://doi.org/10.1098/rspb.2021.2145
https://doi.org/10.1101/2022.07.11.499527
https://doi.org/10.1007/s00285-009-0286-3
https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


Lande, R. (1976). “Natural Selection and Random Genetic Drift in Phenotypic Evolution”.1070

In: Evolution 30.2, pp. 314–334. issn: 0014-3820. doi: 10.2307/2407703.1071

Lehtonen, J. (2018).1072

“The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory”.1073

In: The American Naturalist 191.1, pp. 146–153. issn: 0003-0147. doi: 10.1086/694891.1074

— (2020). “The Price equation and the unity of social evolution theory”.1075

In: Philosophical Transactions of the Royal Society B: Biological Sciences 375.1797, p. 20190362.1076

doi: 10.1098/rstb.2019.0362.1077

Lin, Y. T., Kim, H., and Doering, C. R. (2012). “Features of Fast Living: On the Weak Selection1078

for Longevity in Degenerate Birth-Death Processes”. en.1079

In: Journal of Statistical Physics 148.4, pp. 647–663. issn: 1572-9613.1080

doi: 10.1007/s10955-012-0479-9.1081

Lion, S. (2018). “Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a1082

Unifying Perspective”. In: The American Naturalist 191.1, pp. 21–44. issn: 0003-0147.1083

doi: 10.1086/694865.1084

Luque, V. J. and Baravalle, L. (2021).1085

“The mirror of physics: on how the Price equation can unify evolutionary biology”. en.1086

In: Synthese 199.5, pp. 12439–12462. issn: 1573-0964. doi: 10.1007/s11229-021-03339-6.1087

Majumder, S., Das, A., Kushal, A., Sankaran, S., and Guttal, V. (2021).1088

“Finite-size effects, demographic noise, and ecosystem dynamics”. en.1089

In: The European Physical Journal Special Topics 230.16, pp. 3389–3401. issn: 1951-6401.1090

doi: 10.1140/epjs/s11734-021-00184-z.1091

Mathot, K. J. and Frankenhuis, W. E. (2018).1092

“Models of pace-of-life syndromes (POLS): a systematic review”. en.1093

In: Behavioral Ecology and Sociobiology 72.3, p. 41. issn: 1432-0762.1094

doi: 10.1007/s00265-018-2459-9.1095

Mazzolini, A. and Grilli, J. (2023). “Universality of evolutionary trajectories under arbitrary1096

forms of self-limitation and competition”. In: Physical Review E 108.3, p. 034406.1097

doi: 10.1103/PhysRevE.108.034406.1098

McLeod, D. V. and Day, T. (2019a). “Social evolution under demographic stochasticity”. en.1099

In: PLOS Computational Biology 15.2, e1006739. issn: 1553-7358.1100

doi: 10.1371/journal.pcbi.1006739.1101

— (2019b). “Why is sterility virulence most common in sexually transmitted infections?1102

Examining the role of epidemiology”. In: Evolution 73.5, pp. 872–882. issn: 0014-3820.1103

doi: 10.1111/evo.13718.1104

Metcalf, C. J. E. and Pavard, S. (2007).1105

“Why evolutionary biologists should be demographers”. en.1106

39

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

https://doi.org/10.2307/2407703
https://doi.org/10.1086/694891
https://doi.org/10.1098/rstb.2019.0362
https://doi.org/10.1007/s10955-012-0479-9
https://doi.org/10.1086/694865
https://doi.org/10.1007/s11229-021-03339-6
https://doi.org/10.1140/epjs/s11734-021-00184-z
https://doi.org/10.1007/s00265-018-2459-9
https://doi.org/10.1103/PhysRevE.108.034406
https://doi.org/10.1371/journal.pcbi.1006739
https://doi.org/10.1111/evo.13718
https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


In: Trends in Ecology & Evolution 22.4, pp. 205–212. issn: 0169-5347.1107

doi: 10.1016/j.tree.2006.12.001.1108

Nordbotten, J. M., Bokma, F., Hermansen, J. S., and Stenseth, N. C. (2020).1109

“The dynamics of trait variance in multi-species communities”.1110

In: Royal Society Open Science 7.8, p. 200321. doi: 10.1098/rsos.200321.1111

Oliveira, M. M. d. and Dickman, R. (2017).1112

“The advantage of being slow: The quasi-neutral contact process”. en.1113

In: PLOS ONE 12.8, e0182672. issn: 1932-6203. doi: 10.1371/journal.pone.0182672.1114

Olofsson, H., Ripa, J., and Jonzén, N. (2009).1115

“Bet-hedging as an evolutionary game: the trade-off between egg size and number”.1116

In: Proceedings of the Royal Society B: Biological Sciences 276.1669, pp. 2963–2969.1117

doi: 10.1098/rspb.2009.0500.1118

Page, K. M. and Nowak, M. A. (2002). “Unifying Evolutionary Dynamics”. en.1119

In: Journal of Theoretical Biology 219.1, pp. 93–98. issn: 0022-5193.1120

doi: 10.1006/jtbi.2002.3112.1121

Papkou, A., Gokhale, C. S., Traulsen, A., and Schulenburg, H. (2016).1122

“Host–parasite coevolution: why changing population size matters”.1123

In: Zoology. SI: Host-Parasite Coevolution 119.4, pp. 330–338. issn: 0944-2006.1124

doi: 10.1016/j.zool.2016.02.001.1125

Parsons, T. L., Lambert, A., Day, T., and Gandon, S. (2018).1126

“Pathogen evolution in finite populations: slow and steady spreads the best”.1127

In: Journal of The Royal Society Interface 15.147, p. 20180135. doi: 10.1098/rsif.2018.0135.1128

Parsons, T. L., Quince, C., and Plotkin, J. B. (2010).1129

“Some Consequences of Demographic Stochasticity in Population Genetics”.1130

In: Genetics 185.4, pp. 1345–1354. issn: 1943-2631. doi: 10.1534/genetics.110.115030.1131

Parsons, T. L. and Rogers, T. (2017).1132

“Dimension reduction for stochastic dynamical systems forced onto a manifold by large1133

drift: a constructive approach with examples from theoretical biology”. en.1134

In: Journal of Physics A: Mathematical and Theoretical 50.41, p. 415601. issn: 1751-8121.1135

doi: 10.1088/1751-8121/aa86c7.1136

Pianka, E. R. (1972). “r and K Selection or b and d Selection?”1137

In: The American Naturalist 106.951, pp. 581–588. issn: 0003-0147. doi: 10.1086/282798.1138

Proulx, S. R. and Day, T. (2005). “What can Invasion Analyses Tell us about Evolution under1139

Stochasticity in Finite Populations?” In: Selection 2.1-2, pp. 2–15. issn: 1585-1931, 1588-287X.1140

doi: 10.1556/select.2.2001.1-2.2.1141

Queller, D. C. (2017). “Fundamental Theorems of Evolution”.1142

In: The American Naturalist 189.4, pp. 345–353. issn: 0003-0147. doi: 10.1086/690937.1143

40

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

https://doi.org/10.1016/j.tree.2006.12.001
https://doi.org/10.1098/rsos.200321
https://doi.org/10.1371/journal.pone.0182672
https://doi.org/10.1098/rspb.2009.0500
https://doi.org/10.1006/jtbi.2002.3112
https://doi.org/10.1016/j.zool.2016.02.001
https://doi.org/10.1098/rsif.2018.0135
https://doi.org/10.1534/genetics.110.115030
https://doi.org/10.1088/1751-8121/aa86c7
https://doi.org/10.1086/282798
https://doi.org/10.1556/select.2.2001.1-2.2
https://doi.org/10.1086/690937
https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


Raatz, M. and Traulsen, A. (2023). Promoting extinction or minimizing growth? The impact of1144

treatment on trait trajectories in evolving populations. en. doi: 10.1101/2022.06.17.496570.1145

Rice, S. H. (2004). Evolutionary theory: mathematical and conceptual foundations. English.1146

Sunderland, Mass., USA: Sinauer Associates. isbn: 978-0-87893-702-8.1147

— (2020). “Universal rules for the interaction of selection and transmission in evolution”.1148

In: Philosophical Transactions of the Royal Society B: Biological Sciences 375.1797, p. 20190353.1149

doi: 10.1098/rstb.2019.0353.1150

Rogers, T. and McKane, A. J. (2015).1151

“Modes of competition and the fitness of evolved populations”.1152

In: Physical Review E 92.3, p. 032708. doi: 10.1103/PhysRevE.92.032708.1153

Saunders, P. A., Neuenschwander, S., and Perrin, N. (2018).1154

“Sex chromosome turnovers and genetic drift: a simulation study”. en.1155

In: Journal of Evolutionary Biology 31.9, pp. 1413–1419. issn: 1420-9101.1156

doi: 10.1111/jeb.13336.1157

Seger, J. and Brockmann, H. J. (1987). “What is bet-hedging?”1158

In: Oxford surveys in evolutionary biology. Ed. by P.H. Harvey and L Partridge. Vol. 4.1159

Oxford University Press, pp. 182–211.1160

Shpak, M. (2005). “Evolution of variance in offspring number: The effects of population size and1161

migration”. en. In: Theory in Biosciences 124.1, pp. 65–85. issn: 1611-7530.1162

doi: 10.1016/j.thbio.2005.05.003.1163

— (2007). “Selection Against Demographic Stochasticity in Age-Structured Populations”.1164

In: Genetics 177.4, pp. 2181–2194. issn: 1943-2631. doi: 10.1534/genetics.107.080747.1165

Starrfelt, J. and Kokko, H. (2012).1166

“Bet-hedging—a triple trade-off between means, variances and correlations”. en.1167

In: Biological Reviews 87.3, pp. 742–755. issn: 1469-185X.1168

doi: 10.1111/j.1469-185X.2012.00225.x.1169

Stearns, S. C. (1977).1170

“The Evolution of Life History Traits: A Critique of the Theory and a Review of the Data”.1171

In: Annual Review of Ecology and Systematics 8.1, pp. 145–171.1172

doi: 10.1146/annurev.es.08.110177.001045.1173

Strang, A. G., Abbott, K. C., and Thomas, P. J. (2019).1174

“How to avoid an extinction time paradox”. en. In: Theoretical Ecology 12.4, pp. 467–487.1175

issn: 1874-1746. doi: 10.1007/s12080-019-0416-5.1176

Van Kampen, N. G. (1981). Stochastic processes in physics and chemistry. eng.1177

Amsterdam, New York, New York: North-Holland. isbn: 978-0-444-86200-6.1178

Veller, C., Muralidhar, P., Constable, G. W. A., and Nowak, M. A. (2017).1179

“Drift-Induced Selection Between Male and Female Heterogamety”. en.1180

In: Genetics 207.2, pp. 711–727. issn: 1943-2631. doi: 10.1534/genetics.117.300151.1181

41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496570
https://doi.org/10.1098/rstb.2019.0353
https://doi.org/10.1103/PhysRevE.92.032708
https://doi.org/10.1111/jeb.13336
https://doi.org/10.1016/j.thbio.2005.05.003
https://doi.org/10.1534/genetics.107.080747
https://doi.org/10.1111/j.1469-185X.2012.00225.x
https://doi.org/10.1146/annurev.es.08.110177.001045
https://doi.org/10.1007/s12080-019-0416-5
https://doi.org/10.1534/genetics.117.300151
https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


Wakano, J. Y. and Iwasa, Y. (2013). “Evolutionary Branching in a Finite Population:1182

Deterministic Branching vs. Stochastic Branching”. In: Genetics 193.1, pp. 229–241.1183

issn: 1943-2631. doi: 10.1534/genetics.112.144980.1184

Wang, G., Su, Q., Wang, L., and Plotkin, J. B. (2023).1185

“Reproductive variance can drive behavioral dynamics”.1186

In: Proceedings of the National Academy of Sciences 120.12, e2216218120.1187

doi: 10.1073/pnas.2216218120.1188

Week, B., Nuismer, S. L., Harmon, L. J., and Krone, S. M. (2021).1189

“A white noise approach to evolutionary ecology”.1190

In: Journal of Theoretical Biology 521, p. 110660. issn: 0022-5193.1191

doi: 10.1016/j.jtbi.2021.110660.1192

Wodarz, D., Goel, A., and Komarova, N. L. (2017).1193

“Effect of cell cycle duration on somatic evolutionary dynamics”. en.1194

In: Evolutionary Applications 10.10, pp. 1121–1129. issn: 1752-4571. doi: 10.1111/eva.12518.1195

Wright, J., Bolstad, G. H., Araya-Ajoy, Y. G., and Dingemanse, N. J. (2019).1196

“Life-history evolution under fluctuating density-dependent selection and the adaptive1197

alignment of pace-of-life syndromes”. en. In: Biological Reviews 94.1, pp. 230–247.1198

issn: 1469-185X. doi: 10.1111/brv.12451.1199

Yamamichi, M., Ellner, S. P., and Hairston Jr., N. G. (2023).1200

“Beyond simple adaptation: Incorporating other evolutionary processes and concepts into1201

eco-evolutionary dynamics”. en. In: Ecology Letters 26.S1, S16–S21. issn: 1461-0248.1202

doi: 10.1111/ele.14197.1203

42

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

https://doi.org/10.1534/genetics.112.144980
https://doi.org/10.1073/pnas.2216218120
https://doi.org/10.1016/j.jtbi.2021.110660
https://doi.org/10.1111/eva.12518
https://doi.org/10.1111/brv.12451
https://doi.org/10.1111/ele.14197
https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Information for1204

Bhat and Guttal 2024: Eco-evolutionary dynamics for finite1205

populations and the noise-induced reversal of selection1206

Ananda Shikhara Bhat1,2,3,∗, Vishwesha Guttal1
1207

1 Centre for Ecological Sciences, Indian Institute of Science, Bengaluru,1208

Karnataka-560012, India1209

2 Department of Biology, Indian Institute of Science Education and Research Pune,1210

Maharashtra-411008, India1211

3 Current Affiliation: Institute of Organismic and Molecular Evolution (iomE), Johannes1212

Gutenberg University, 55128 Mainz, Germany; Institute for Quantitative and1213

Computational Biosciences (IQCB), Johannes Gutenberg University, 55128 Mainz,1214

Germany1215

* E-mail for correspondence: abhat@uni-mainz.de1216

43

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

mailto:abhat@uni-mainz.de
https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


Supplement to Bhat and Guttal 2024, “Evolution in finite populations”

Table of Contents1217

Supplementary Information 431218

S1 The master equation and the system size expansion 451219

S2 Trait frequency dynamics using Itô’s formula 471220
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S1 The master equation and the system size expansion1235

Given a system with m different types of individuals and birth and death rate functions bi(n) and1236

di(n), we are interested in finding an equation for the rate of change of the conditional probability1237

P(n, t|n0, 0), the probability of finding the population in a state n at time t. Henceforth, we omit1238

the conditioning for notational brevity and simply write P(n, t) for this quantity. We assume that1239

the birth and death rates are of the order of the total population size, i.e. that bi(n) and di(n) are1240

O(∑i ni) functions.1241

For each i ∈ {1, . . . , m}, let us now define two step operators E±
i by their action on any1242

function f ([n1, . . . , nm], t) as:1243

E±
i f ([n1, . . . , ni, . . . , nm], t) = f ([n1, . . . , ni ± 1, . . . nm], t) (S1)1244

In other words, E±
i just changes the population through the addition or removal of one type i1245

individual. We can now write down an exact equation for the rate of change of P(n, t) by noting1246

that the only direct transitions allowed are those from populations that are exactly one individual1247

away from our focal population. Thus, we have the relation1248

∂P
∂t

(n, t) =
m

∑
j=1

[
(E−

j − 1)bj(n)P(n, t) + (E+
j − 1)dj(n)P(n, t)

]
(S2)1249

This equation is called the ‘master equation’, and completely characterizes our m-dimensional1250

process.1251

As mentioned in the main text, we assume that there is a carrying capacity/population size1252

measure K > 0 such that the total population size ∑i ni is expected to be O(K). This allows us1253

to move from population numbers n to population ‘densities’ x = n/K. Specifically, we assume1254

that we can find O(1) functions b(K)i and d(K)i such that we can write1255

bi(n) = Kb(K)i (x)

di(n) = Kd(K)i (x)
(S3)1256

Note that this assumption means that b(K)i and d(K)i remain well-defined even in the K → ∞ limit,1257

since bi/K and di/K remain O(1) by our assumption on the scaling properties of n, bi, and di.1258

Thus, we may still speak of population densities x in the infinite population size limit (K → ∞).1259

Note that this scaling assumption implies that in the functional forms 2, we assume that b(ind)
i (x),1260

d(ind)
i (x), and Qi(x) are all O(1) functions.1261

To describe our stochastic process in terms of population densities rather than absolute pop-1262

ulation sizes, we now define new step operators ∆±
i by their action on any real-valued function1263
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f (x, t) as1264

∆±
i f ([x1, . . . , xm], t) = f ([x1, . . . , xi ±

1
K

, . . . xm], t) (S4)1265

In terms of these new variables, (S2) becomes1266

∂P
∂t

(x, t) = K
m

∑
j=1

[
(∆−

j − 1)b(K)j (x)P(x, t) + (∆+
j − 1)d(K)j (x)P(x, t)

]
(S5)1267

If K is large, we can now Taylor expand the action of the step operators as1268

f ([x1, . . . , xi ±
1
K

, . . . xm], t) = f (x, t)± 1
K

∂ f
∂xi

(x, t) +
1

2K2
∂2 f
∂x2

i
(x, t) + · · ·1269

which, after substituting into (S5) and neglecting higher order terms, yields the equation1270

∂P
∂t

(x, t) =
m

∑
j=1

[
− ∂

∂xj
{A−

j (x)P(x, t)}+ 1
2K

∂2

∂x2
j
{A+

j (x)P(x, t)}
]

(S6)1271

where1272

A±
i (x) = b(K)i (x)± d(K)i (x)1273

Equation (S6) is an m-dimensional version of a ‘Fokker-Planck equation’ for the probability den-1274

sity P(x, t).1275

Itô SDE representation1276

For our purposes, we will often find it convenient to describe the same process as defined by the1277

Fokker-Planck equation (S6) via an ‘Itô stochastic differential equation’. It is well-known (Øksendal,1278

1998) that a stochastic process whose probability density function satisfies a Fokker-Planck equa-1279

tion of the form (S6) is equivalent to an m-dimensional stochastic process obtained as the solution1280

to the Itô SDE1281

dXt = A−(Xt)dt +
1√
K

D(Xt)dWt (S7)1282

Here, A−(Xt) is an m-dimensional vector with ith element = A−
i (Xt). D(Xt) is an m × m matrix1283

with ijth element (D(Xt))ij = δij

(
A+

i A+
j

) 1
4
, where δij is the Kronecker delta symbol, defined by1284

δij =

1 i = j

0 i ̸= j
1285

Finally, Wt is the m-dimensional Wiener process (standard Brownian motion) and can be thought1286

of as a vector of independent one-dimensional Wiener processes.1287
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For a more detailed discussion on such approximations, we refer the reader to Chapter 111288

of Ethier and Kurtz, 1986 for the mathematically rigorous theory and Chapter 10 of Van Kampen,1289

1981 for a heuristic approach. Pedagogical treatments focused on eco-evolutionary population1290

dynamics can be found in Black and McKane, 2012 and Czuppon and Traulsen, 2021.1291

S2 Trait frequency dynamics using Itô’s formula1292

We first recall the version of the multi-dimensional Itô’s formula that will be relevant to us.1293

Consider an m-dimensional real Itô process Xt given by the solution to1294

dXt = µ(Xt)dt + σ(Xt)dWt1295

where µ : Rm → Rm is the ‘drift vector’ and σ : Rm → Rm×m is the ‘diffusion matrix’. Let1296

f : Rm → R be an arbitrary C2(Rm) function. Then, Itô’s formula (Øksendal, 1998, Section 4.2)1297

states that the stochastic process f (Xt) must satisfy:1298

d f (Xt) =

[
(∇X f )T µ +

1
2

Tr[σT(HX f )σ]
]

dt + (∇X f )T σdWt (S8)1299

where Tr[·] denotes the trace of a matrix, (·)T denotes the transpose, and we have suppressed the1300

Xt dependence of µ and σ to reduce clutter. Here, ∇x f is the m-dimensional gradient vector of f1301

with respect to x and Hx f is the m × m Hessian matrix of f with respect to x, respectively defined1302

for f ([x1, . . . , xm]T) as:1303

(∇x f )j =
∂ f
∂xj

1304

(Hx f )jk =
∂2 f

∂xj∂xk
1305

In our case, we have the Itô process given by (S7), which defines how the density of each type of1306

individual changes over time. We thus have µ(Xt) = A−(Xt) and σ(Xt) = D(Xt)/
√

K. For each1307

fixed i ∈ {1, 2, . . . , m}, let us define a scalar function fi : Rm → R as1308

fi(x) =
xi

m
∑

j=1
xj

1309

Thus, fi(Xt) gives us the frequency of type i individuals when the population is described by the1310

vector Xt. This function is obviously C2(Rm), and we can thus use Itô’s formula (S8) to describe1311

how it changes over time. The jth element of the gradient of fi is given by:1312
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(∇x fi)j =
∂

∂xj

 xi
m
∑

k=1
xk

1313

=


 1

m
∑

r=1
xr

 ∂xi

∂xj
−

 xi(
m
∑

r=1
xr

)2

 m

∑
k=1

∂xk

∂xj

 (S9)1314

where we have defined the frequency of the ith type pi = fi(x). To proceed further, we require1315

the quantity ∂xj
∂xk

for any pair of types j, k ∈ {1, 2, 3, . . . , m − 1, m}. Since changes in densities1316

in our system are only being determined by ecological interactions at the individual level, with1317

changes in total population size being an emergent quantity, we can assume that our system1318

obeys ∂xj
∂xk

= δjk ∀ j, k ∈ {1, 2, 3, . . . , m − 1, m}. Note that this is not true if the total population size1319

is held constant since changes in densities of one type must be accompanied by complementary1320

changes in densities of at least one other type to keep the total density ∑i xi strictly constant.1321

We can now substitute ∂xj
∂xk

= δjk into equation (S9). Upon doing this, we obtain1322

(∇x fi)j =
1

m
∑

r=1
xr

(
δij − pi

)
(S10)1323

Similarly, we can also calculate elements of the Hessian matrix. The jkth element of the Hessian1324

is given by:1325

(Hx fi)jk =
∂2

∂xj∂xk

 xi
m
∑

l=1
xl

1326

=
∂

∂xj

 δik
m
∑

r=1
xr

− xi(
m
∑

r=1
xr

)2

1327

=
1(

m
∑

r=1
xr

)2

(
2pi − δij − δik

)
(S11)1328

Thus, for the first term of (S8), we have:1329
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(∇X fi)
T A− =

m

∑
j=1

(
(∇x fi)j

)
A−

j1330

=
1

m
∑

r=1
xr

m

∑
j=1

(
δij − pi

)
A−

j1331

=
1

m
∑

r=1
xr

(
A−

i − pi

m

∑
j=1

A−
j

)
(S12)1332

This term describes the effects of selection and influx (mutation/migration) at the infinite pop-1333

ulation limit. However, the finiteness of the population adds a second directional term to these1334

dynamics, described by the second term that multiplies dt in (S8). To calculate it, we first calcu-1335

late:1336

1√
K
(Hx fiD)jk =

1√
K

m

∑
l=1

(Hx fi)jl (D)lk1337

=
1

√
K
(

m
∑

r=1
xr

)2

m

∑
l=1

(
2pi − δij − δil

)
δlk
(

A+
l A+

k

) 1
4 (S13)1338

=
1

√
K
(

m
∑

r=1
xr

)2

((
2pi − δij

)
(A+

k )
1
2 − δik

(
A+

i A+
k

) 1
4
)

(S14)1339

=
1

√
K
(

m
∑

r=1
xr

)2

(
2pi − δij − δik

)
(A+

k )
1
2 (S15)1340

and thus:1341

1
K

(
DTHx fiD

)
lk
=

1
K

m

∑
j=1

(
DT
)

l j
(Hx fiD)jk1342

=
1

K
(

m
∑

r=1
xr

)2

m

∑
j=1

δl j

(
A+

l A+
j

) 1
4
(A+

k )
1
2
(
2pi − δij − δik

)
(S16)1343

=
1

K
(

m
∑

r=1
xr

)2 (A+
k )

1
2

(
2pi(A+

l )
1
2 − (A+

i )
1
2 δil − (A+

l )
1
2 δik

)
(S17)1344
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Using this, we see that the trace of this matrix is given by:1345

1
K

Tr[DTHx fiD] =
1
K

m

∑
k=1

(
DTHx fiD

)
kk

1346

=
1

K
(

m
∑

r=1
xr

)2

m

∑
k=1

(
2pi(A+

k A+
k )

1
2 − (A+

i A+
k )

1
2 δik − (A+

k A+
k )

1
2 δik

)
(S18)1347

=
1

K
(

m
∑

r=1
xr

)2

(
2pi

(
m

∑
k=1

A+
k

)
− 2A+

i

)
(S19)1348

and thus, the second term multiplying dt in (S8) is given by:1349

1
2K

Tr[DTHx fiD] =
−1

K
(

m
∑

r=1
xr

)2

(
A+

i − pi

(
m

∑
k=1

A+
k

))
(S20)1350

Finally, denoting dWt = [dW(1)
t , dW(2)

t , . . . , dW(m)
t ]T where each W(j)

t is an independent one di-1351

mensional Wiener process, we have:1352

(DdWt)j =
m

∑
k=1

DjkdW(k)
t1353

=
m

∑
k=1

δjk

(
A+

j A+
k

) 1
4 dW(k)

t (S21)1354

=
(

A+
j

)1/2
dW(j)

t (S22)1355

Thus, using (S10), we see that the last term on the RHS of (S8) is given by:1356

1√
K
(∇X f )T DdWt =

1√
K

m

∑
j=1

(∇x fi)j (DdWt)j1357

=
1(

m
∑

r=1
xr

)√
K

m

∑
j=1

(
δij − pi

) (
A+

j

)1/2
dW(j)

t (S23)1358

=
1(

m
∑

r=1
xr

)√
K

(
A+

i

)1/2 dW(i)
t − pi

m

∑
j=1

(
A+

j

)1/2
dW(j)

t (S24)1359
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Putting equations (S12), (S20) and (S24) into (S8) and letting NK(t) =
m
∑

r=1
xr we see that pi =1360

fi(X)t, the frequency of the ith type in the population Xt, changes according to the equation:1361

dpi =
1

NK(t)

(
A−

i − pi

m

∑
j=1

A−
j

)
dt︸ ︷︷ ︸

K → ∞ prediction

− 1
K

1
N2

K(t)

(
A+

i − pi

(
m

∑
k=1

A+
k

))
dt︸ ︷︷ ︸

Directional finite size effects
due to differential turnover rates

+
1√

KNK(t)

[(
A+

i

)1/2 dW(i)
t − pi

m

∑
j=1

(
A+

j

)1/2
dW(j)

t

]
︸ ︷︷ ︸

Non-directional finite size effects
due to stochastic fluctuations

(S25)1362

Plugging the functional forms of (2) and the definitions of wi and τi into the definitions of A−
i1363

and A+
i , we obtain the relations1364

A−
i = xiwi(x) + λQi(x)

A+
i = xiτi(x) + λQi(x)

(S26)1365

Thus, for the first term of (S25), we have1366

1
NK(t)

(
A−

i − pi

m

∑
j=1

A−
j

)
=

1
NK(t)

[wi(x)xi + λQi(x)]−
pi

NK(t)

m

∑
j=1

[
wj(x)xj + λQj(x)

]
1367

= wi(x)pi +
λ

NK(t)
Qi(x)− pi

m

∑
j=1

[
wj(x)pj +

λ

NK(t)
Qj(x)

]
1368

where we have used the definition of pi from (5). Now using the definition of mean fitness from1369

(6) and rearranging terms gives us1370

1
NK(t)

(
A−

i − pi

m

∑
j=1

A−
j

)
= (wi(x)− w)pi + λ

[
Qi(p)− pi

(
m

∑
j=1

Qj(p)

)]
(S27)1371

where we have defined Qj(p) = Qj(x)/NK(t). Repeating the exact same calculations for the A+
i1372

terms in the second term of (S25) now yields equation1373
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dpi(t) =

[
(wi(x)− w)pi + λ

{
Qi(p)− pi

(
m

∑
j=1

Qj(p)

)}]
dt︸ ︷︷ ︸

Infinite population predictions: selection-mutation balance
for higher fitness

− 1
K

1
NK(t)

[
(τi(x)− τ)pi + λ

{
Qi(p)− pi

(
m

∑
j=1

Qj(p)

)}]
dt︸ ︷︷ ︸

Directional noise-induced effects: selection-mutation balance
for lower turnover rates

+
1√

KNK(t)

[√
A+

i (x)dW(i)
t − pi

m

∑
j=1

√
A+

j (x)dW(j)
t

]
︸ ︷︷ ︸

Non-directional noise-induced effects
due to stochastic fluctuations

(S28)1374

which is the first key result (10) presented in the main text (with λ = 0).1375

S3 A stochastic analog of the Price equation for finite, fluctuating1376

populations1377

In this section, we will derive an SDE for the rate of change of the population mean value of any1378

type-level quantity in finite, fluctuating populations. Let f be any type-level quantity, with value1379

fi(t) for the ith type. Using the product rule of calculus on the definition (6) of the statistical1380

mean tells us that we have the relation1381

d f
dt

=
d
dt

(
m

∑
i=1

fi pi

)
=

m

∑
i=1

(
fi

∂pi

∂t
+ pi

∂ fi

∂t

)
=

m

∑
i=1

fi
∂pi

∂t
+

(
∂ f
∂t

)
(S29)1382

i.e.1383

d f =
m

∑
i=1

fidpi +

(
∂ f
∂t

)
dt (S30)1384

We will further simplify the first term on the RHS of (S30). We do this by using (10), which gives1385

us a representation of dpi. Using the RHS of (10), we can conclude that we must have1386
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m

∑
i=1

fidpi =

(
m

∑
i=1

fiwi(x)pi − w
m

∑
i=1

fi pi + λ

[
m

∑
i=1

Qi(p) fi −
(

m

∑
j=1

Qj(p)
m

∑
i=1

pi fi

)])
dt

− 1
KNK

(
m

∑
i=1

fiτi(x)pi − τ
m

∑
i=1

fi pi + λ

[
m

∑
i=1

Qi(p) fi −
(

m

∑
j=1

Qj(p)
m

∑
i=1

pi fi

)])
dt

1√
KNK

([
m

∑
i=1

fi

√
A+

i (x)dW(i)
t −

m

∑
i=1

fi pi

m

∑
j=1

√
A+

j (x)dW(j)
t

]) (S31)1387

now using the definition of the statistical mean from (6) in equation (S31), we obtain1388

m

∑
i=1

fidpi =

(
f w − f w + λ

[
m

∑
i=1

Qi(p) fi −
(

m

∑
j=1

Qj(p) f

)])
dt

− 1
KNK

(
f τ − f τ + λ

[
m

∑
i=1

Qi(p) fi −
(

m

∑
j=1

Qj(p) f

)])
dt

1√
KNK

([
m

∑
i=1

fi

√
A+

i (x)dW(i)
t −

m

∑
j=1

f
√

A+
j (x)dW(j)

t

]) (S32)1389

By the definition of the statistical covariance (7), we now obtain1390

m

∑
i=1

fidpi = Cov(w, f )dt + λ

[
m

∑
i=1

Qi(p) fi − f

(
m

∑
j=1

Qj(p)

)]
dt

− 1
KNK

(
Cov(w, f )dt + λ

[
m

∑
i=1

Qi(p) fi − f

(
m

∑
j=1

Qj(p)

)]
dt

)
1√

KNK

(
m

∑
i=1

(
fi − f

)√
A+

i (x)dW(i)
t

) (S33)1391

Collecting all terms that capture effects related to mutations/migrations (i.e. all terms with a λ1392

factor) via defining the term1393

M f (p, NK) := λ

(
1 − 1

KNK(t)

)( m

∑
i=1

fiQi(p)− f
m

∑
i=1

Qi(p)

)
(S34)1394

and collecting all stochastic integral terms via defining the term1395

dW f :=
m

∑
i=1

(
fi − f

)√
A+

i (x)dW(i)
t (S35)1396

and substituting into equation (S33) now yields1397
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m

∑
i=1

fidpi = Cov(w, f )dt − 1
KNK(t)

Cov(τ, f )dt + M f (p, NK)dt +
1√

KNK(t)
dW f (S36)1398

This is the simplified version of the first term on the RHS of equation (S30). Upon substitution,1399

(S30) becomes1400

d f = Cov(w, f )dt − 1
KNK(t)

Cov(τ, f )dt + M f (p, NK)dt +
1√

KNK(t)
dW f +

(
∂ f
∂t

)
dt (S37)1401

which is precisely equation (26) in the main text once we set λ = 0 (i.e. M f = 0).1402

S4 A Price-like equation for the variance of a type-level quantity1403

In this section, we will derive an SDE for the rate of change of the variance of any type-level1404

quantity in finite, fluctuating populations. From the definition (7), we see that the variance of1405

any type level quantity f is given by:1406

σ2
f := Cov( f , f ) = ( f 2)− ( f )2 (S38)1407

By the product rule, we have1408

dσ2
f

dt
= 2 f

∂ f
∂t

+
m

∑
i=1

f 2
i

dpi

dt
− d

dt
( f

2
) (S39)1409

We will evaluate the RHS term by term. The first term is as simplified as can be without more1410

information about f . For the second term, we can substitute dpi from (10) and then use the exact1411

same steps we carried out in supplementary section S3 to derive equation (26). Upon doing this,1412

we obtain1413

m

∑
i=1

f 2
i dpi = Cov(w, f 2)dt − 1

KNK
Cov(τ, f 2)dt

+ λ

(
1 − 1

KNK(t)

)( m

∑
i=1

f 2
i Qi(p)− f 2

m

∑
i=1

Qi(p)

)
dt

+
1√

KNK(t)

(
m

∑
i=1

(
f 2
i − f 2

)√
A+

i dW(i)
t

) (S40)1414

For the third term, we require Itô’s formula. Here, the relevant version of Itô’s formula is the one-1415

dimensional version of (S8). Given a one-dimensional process dXt = S(Xt)dt + ∑j Dj(Xt)dW(j)
t1416

with S, Dj being suitable real functions and each W(j)
t being an independent Wiener process, Itô’s1417
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formula says that given any C2(R) function g(x), we have the relation:1418

dg(Xt) =

(
S(Xt)g′(Xt) +

g′′(Xt)

2 ∑
j

D2
j (Xt)

)
dt + ∑

j
Dj(Xt)g′(Xt)dW(j)

t (S41)1419

In our case, we have a one-dimensional process for the mean value d f of the type level quantity,1420

and the C2(R) function g(x) = x2. Itô’s formula thus says that the third term of (S39) is given1421

by:1422

d( f
2
) =

(
2 f S(Xt) + ∑

j
D2

j (Xt)

)
dt + ∑

j
2 f Dj(Xt)dW(j)

t (S42)1423

where the relevant functions S and Dj can be read off from (26). Since the dW(j)
t terms are1424

unwieldy, we will denote the contribution of all the dW(j)
t terms collectively by dWσ2

f
to reduce1425

notational clutter and only explicitly calculate these terms at the end. We also note that the1426

covariance operator is a bilinear form, i.e. given any three quantities X, Y and Z and any constant1427

a ̸= 0, we have the relations:1428

Cov(aX, Y) = aCov(X, Y) = Cov(X, aY)1429

Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)1430

Substituting equations (S40) and (S42) into equation (S39) and using this property of covariances,1431

we obtain:1432

dσ2
f = Cov(w, f 2 − 2 f f )dt − 1

KNK

(
Cov(τ, f 2 − 2 f f )

)
dt + 2

(
f

∂ f
∂t

− f
(

∂ f
∂t

))
dt

+ λ

(
1 − 1

KNK(t)

)( m

∑
i=1

( f 2
i − 2 f fi)Qi(p)− ( f 2 − 2 f

2
)

m

∑
i=1

Qi(p)

)
dt

− 1
KN2

K(t)

(
m

∑
i=1

( fi − f )2 A+
i

)
dt

+ dWσ2
f

(S43)1433

Now, we note that1434
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1
NK

A+
i =

1
NK

(τixi + λQi(x)) (S44)1435

= τi pi + λQi(p) (S45)1436

and thus the third line of (S43) is1437

1
KN2

K(t)

(
m

∑
i=1

( fi − f )2 A+
i

)
dt =

1
KNK

m

∑
i=1

( fi − f )2 (τi pi + λQi(p)) (S46)1438

=
1

KNK

m

∑
i=1

(
fi − f

)2
(τi pi + λQi(p)) (S47)1439

=
1

KNK

(
τ
(

f − f
)2

+ λ
m

∑
i=1

(
fi − f

)2
Qi(p)

)
(S48)1440

=
1

KNK

(
Cov(τ,

(
f − f

)2
) + τ

(
f − f

)2
+ λ

m

∑
i=1

(
fi − f

)2
Qi(p)

)
(S49)

1441

=
1

KNK

(
Cov(τ,

(
f − f

)2
) + τσ2

f + λ
m

∑
i=1

(
fi − f

)2
Qi(p)

)
(S50)1442

where we have used the definition of statistical covariance in the second to last line and used the1443

definition of statistical variance in the last line. Substituting (S50) into (S43) and using Mσ2
f
(p, NK)1444

to denote the contributions of all the mutational terms (i.e. all terms with a λ factor) for notational1445

brevity, we obtain1446

dσ2
f = Cov(w, f 2 − 2 f f )dt − 1

KNK

(
Cov(τ, f 2 − 2 f f ) + Cov(τ,

(
f − f

)2
) + τσ2

f

)
dt

+ 2Cov
(

∂ f
∂t

, f
)

dt + Mσ2
f
(p, NK)dt + dWσ2

f

(S51)1447

We can now complete the square inside the covariance terms of the first line of the RHS by1448

writing f 2 − 2 f f = ( f − f )2 − f
2

to obtain1449
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dσ2
f =

[
Cov

(
w, ( f − f )2

)
− Cov

(
w,
(

f
)2
) ]

dt

− 1
KNK

[
Cov

(
τ, ( f − f )2

)
− Cov

(
τ,
(

f
)2
)
+ Cov(τ,

(
f − f

)2
) + τσ2

f

]
dt

+ 2Cov
(

∂ f
∂t

, f
)

dt + Mσ2
f
(p, NK)dt + dWσ2

f

(S52)1450

To simplify the covariance terms of the first line of the RHS, we observe that1451

Cov
(

w,
(

f
)2
)
=

(
w
(

f
)2
)
− w

((
f
)2
)

1452

=
(

f
)2 m

∑
i=1

wi pi − w
(

f
)2 m

∑
i=1

pi1453

=
(

f
)2

w − w
(

f
)2

= 01454

and similarly,1455

Cov
(

τ,
(

f
)2
)
= 01456

and thus, using this in (S52), we see that the rate of change of the variance of any type-level1457

quantity f in the population satisfies:1458

dσ2
f = Cov

(
w, ( f − f )2

)
dt − 1

KNK

[
τσ2

f + 2Cov
(

τ, ( f − f )2
) ]

dt

+ 2Cov
(

∂ f
∂t

, f
)

dt + Mσ2
f
(p, NK)dt + dWσ2

f

(S53)1459

This is precisely equation (31) in the main text. To calculate the mutation term, we substitute1460

(S50) into (S43) to find1461

Mσ2
f
(p, NK) = λ

(
m

∑
i=1

(
f 2
i − 2 f fi − f 2 + 2 f

2
)

Qi(p)

)

− λ

KNK

m

∑
i=1

(
f 2
i − 2 f fi − f 2 + 2 f

2
+ ( fi − f )2

)
Qi(p)

(S54)1462

We can further simplify the first term of the RHS as1463
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f 2
i − 2 f fi − f 2 + 2 f

2
= ( f 2

i + f
2 − 2 f fi)− ( f 2 − f

2
)1464

= ( fi − f )2 − σ2
f1465

and similarly, the second term as1466

f 2
i − 2 f fi − f 2 + 2 f

2
+ ( fi − f )2 = 2( fi − f )2 − σ2

f1467

thus, the contributions of influx terms to the change in the variance of f are given by1468

Mσ2
f
(p, NK) = λ

(
m

∑
i=1

(
( fi − f )2 − σ2

f

)
Qi(p)

)

− λ

KNK

m

∑
i=1

(
2( fi − f )2 − σ2

f

)
Qi(p)

(S55)1469

which after slight rearrangement becomes1470

Mσ2
f
(p, NK) = λ

(
m

∑
i=1

[(
1 − 2

KNK

)
( fi − f )2Qi(p)

]
− σ2

f

(
1 − 1

KNK

) m

∑
i=1

Qi(p)

)
(S56)1471

Finally, for the stochastic integral term, we can use equations (S40) and (S42) to calculate:1472

dWσ2
f
=

1√
KNK(t)

(
m

∑
i=1

(
f 2
i − f 2 − 2 f ( fi − f )

)√
A+

i dW(i)
t

)
(S57)1473

=
1√

KNK(t)

(
m

∑
i=1

(
f 2
i − f 2 − 2 f fi − 2 f

2
)√

A+
i dW(i)

t

)
(S58)1474

=
1√

KNK(t)

(
m

∑
i=1

(
fi − f

)2√
A+

i dW(i)
t

)
(S59)1475

which is equation (32) in the main text upon setting λ = 0 (i.e. Mσ2 = 0).1476

S5 A more elegant representation of sums of stochastic integrals1477

against independent Wiener processes1478

In the main text, we arrived at three stochastic differential equations (equations (10), (26), and1479

(31)) that describe the change in the frequency of a type, the population mean value of a type-1480

level quantity, and the population variance of a type-level quantity over time. All three of these1481
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equations contained stochastic fluctuation terms which were of the form of a sum of stochastic1482

integrals of several independent functions against independent Wiener processes. In this section,1483

we will present a more elegant representation of these terms.1484

Let us first recall that given m independent one-dimensional Wiener processes W(1)
t , W(2)

t , . . . , W(m)
t ,1485

m ‘nice’ real functions g1(x), g2(x), . . . , gm(x), and the stochastic process1486

dXt =
m

∑
i=1

gi(Xt)dW(i)
t1487

We can always find a single one-dimensional Wiener process Wt such that1488

dXt =

(
m

∑
i=1

g2
i (Xt)

)1/2

dWt1489

This result is well-known but we were unable to find a reference that explicitly proved it, and1490

so we prove it as a lemma at the end of this supplementary section.1491

Using this result, we can now calculate the stochastic integral terms of our equations. For1492

equation (12), we can calculate1493

m

∑
i=1

(xiτi + λQi(x)) dW(i)
t =

[
m

∑
i=1

xiτi + λ
m

∑
i=1

Qi(x)

]1/2

dWNK
t (S60)1494

=

[
τNK(t) + λ

m

∑
i=1

Qi(x)

]1/2

dWNK
t (S61)1495

where WNK
t is a one-dimensional Wiener process. For equation (S28), the stochastic analog of the1496

replicator-mutator equation, we find that the noise term can be written as a stochastic integral1497

against a single Wiener process Wt as1498

1√
KNK(t)

[
pi(1 − pi)

2τi + p2
i

(
∑
j ̸=i

τj pj

)
+ λ

{
(1 − pi)

2Qi(p) + p2
i ∑

j ̸=i
Qj(p)

}]1/2

dWt (S62)1499

For equation (S37), the stochastic analog of the Price equation, we have:1500

dW f =
m

∑
i=1

(
fi − f

)√
A+

i (x)dW(i)
t =

(
m

∑
i=1

(
fi − f

)2
A+

i (x)

)1/2

dWt (S63)1501

where Wt is now a single one-dimensional Wiener process. This is precisely the term calculated1502

in equation (S50) (barring the 1/KN2
K pre-factor), and thus the stochastic term for the mean value1503

is given by:1504
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dW f =

√√√√NK(t)

(
Cov(τ,

(
f − f

)2
) + τσ2

f + λ
m

∑
i=1

(
fi − f

)2
Qi(p)

)
dWt (S64)1505

Similarly, for the variance equation (S57), we can write1506

dWσ2
f
=

m

∑
i=1

(
fi − f

)2√
A+

i (x)dW(i)
t =

(
m

∑
i=1

(
fi − f

)4
A+

i (x)

)1/2

dWt (S65)1507

where Wt is now a single one-dimensional Wiener process. A calculation exactly analogous to1508

that done in obtaining (S50) reveals that this term can be written as1509

dWσ2
f
=

√√√√NK(t)

(
Cov(τ,

(
f − f

)4
) + τ(σ2

f )
2 + λ

m

∑
i=1

(
fi − f

)4
Qi(p)

)
dWt (S66)1510

Proof of the representation of sums of stochastic integrals with respect to1511

independent Wiener processes1512

Here, we prove the mathematical result we used above. We stress once again that this is not1513

a new result — we provide the proof here because, while the proof is mathematically easy, we1514

were unable to find a suitable citation that explicitly writes down the proof.1515

Lemma. Let m ∈ N. Let W(1)
t , W(2)

t , . . . , W(m)
t be m independent one-dimensional Wiener pro-1516

cesses. Let g1(x), g2(x), . . . , gm(x) be m ‘nice’ (L2(R), Lipschitz, etc.) real functions. Let1517

dXt =
m

∑
i=1

gi(Xt)dW(i)
t1518

Then, we can always find a single one-dimensional Wiener process Wt (on the same probability1519

space) such that1520

dXt =

(
m

∑
i=1

g2
i (Xt)

)1/2

dWt1521

Proof. It suffices to prove the m = 2 case.1522

Let dXt = g1(Xt)dW(1)
t + g2(Xt)dW(2)

t . Let us consider the two-dimensional process Wt = [W(1)
t , W(2)

t ]T1523

on R2. Define a new function G : R → R2 given by1524

G(x) =
1√

g2
1(x) + g2

2(x)


g1(x)

g2(x)

 (S67)1525
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Now, by definition, we have1526

t∫
0

G(Xs) · dWs =

t∫
0

g1(Xs)√
g2

1(Xs) + g2
2(Xs)

dW(1)
t +

t∫
0

g2(Xs)√
g2

1(Xs) + g2
2(Xs)

dW(2)
s (S68)1527

Using the Itô isometry (Karatzas and Shreve, 1998, Chapter 2, Proposition 2.10), we can calculate1528

the quadratic variation of
∫

G · dW as1529

〈 ∫
G(Xs) · dWs

〉
t
=

t∫
0

∥G(Xs)∥2 d⟨W⟩s1530

=

t∫
0

1
g2

1 + g2
2
· (g2

1 + g2
2)ds1531

=

t∫
0

ds = t (S69)1532

Since
∫

G · dW is a stochastic integral, the process (t, ω) →
∫ t

0 G(Xs(ω)) · dWs(ω) ∈ M c
2 and is1533

thus a continuous martingale. But, by Lévy’s characterization of Brownian motion (Karatzas and1534

Shreve, 1998, Chapter 3, Theorem 3.16), the only continuous martingale Mt that satisfies ⟨M⟩t = t1535

is the standard Brownian motion. Thus, from equation (S69), we are led to conclude that there is1536

a one-dimensional Wiener process Wt on the same probability space such that we can write1537

G(Xt) · dWt = dWt (S70)1538

We can now use equation (S68) on the LHS of equation (S70) to write1539

g1(Xt)√
g2

1(Xt) + g2
2(Xt)

dW(1)
t +

g2(Xt)√
g2

1(Xt) + g2
2(Xt)

dW(2)
t = dWt (S71)1540

⇒ g1dW(1)
t + g2dW(2)

t =
√

g2
1(Xt) + g2

2(Xt)dWt (S72)1541

By definition of our original process Xt, we can now conclude that1542

dXt =
√

g2
1(Xt) + g2

2(Xt)dWt (S73)1543

thus completing the proof.1544
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S6 Long-time behavior of the stochastic replicator equation for two1545

species1546

To study the effects of demographic stochasticity on evolutionary dynamics more thoroughly,1547

we use this section to examine the long-term behavior of the system defined by equation (13).1548

Following McLeod and Day, 2019, we will do this using the speed density. Given any one-1549

dimensional diffusion process dXt = µ(Xt)dt + σ(Xt)dWt defined over an interval [a, b] ⊆ R,1550

the speed density m(x) of the process (Karlin and Taylor, 1981; Etheridge, 2011) is defined as the1551

function1552

m(x) =
1

σ2(x)
exp

(
2

x∫
µ(y)
σ2(y)

dy

)
(S74)1553

where the lower limit of the integral being left unspecified is meant to denote an indefinite1554

integral evaluated at the point x since the choice of the lower limit is arbitrary ( Karlin and Taylor,1555

1981, Chapter 15, Equation 3.10). The speed density is important because it provides information1556

about the long-term behavior of the stochastic process Xt (Karlin and Taylor, 1981, Chapter 15,1557

Remark 3.2). In particular, if there exists a constant 0 < N < ∞ such that
∫ b

a m(x)dx = 1/N ,1558

then the stochastic process obtained as the solution to dXt = µ(Xt)dt+ σ(Xt)dWt attains a unique1559

stationary state X∞ as t → ∞, and this stationary state has a probability distribution given1560

by( Karlin and Taylor, 1981, Chapter 15, Equation 5.34 along with Chapter 15, Equation 3.10;1561

Czuppon and Traulsen, 2021)1562

P ({x1 ≤ X∞ ≤ x2}) = N
x2∫

x1

m(x)dx + C (S75)1563

That is to say, the probability density of the stationary state will be given by Nm(x). Regardless1564

of whether such an N can be found, the speed density m(x) always tells us about the time the1565

system spends in the vicinity of the point x. More precisely, if we provide an initial condition1566

x0 ∈ [a, b] for the stochastic process obtained as the solution to dXt = µ(Xt)dt + σ(Xt)dWt, the1567

expected time taken by this process to exit the interval (x0 − ϵ, x0 + ϵ) is proportional to m(x0)1568

as ϵ → 0 (Karlin and Taylor, 1981, Chapter 15, Remark 3.2). In our case, we have a stochastic1569

process for the change of type frequencies over time that takes values in [0, 1] and is given by the1570

solution to equation (14). In the rest of this section, we work with equation (13a) and thus do not1571

account for influx terms λQi. For convenience, let us define1572
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E(p) = s(p, NK) +
1

KNK
κ(p, NK) (S76)1573

V(p) =
1

KNK
(τ1(p, NK) + pκ(p, NK)) (S77)1574

where we have suppressed the NK dependence of E and V to reduce clutter. In this notation,1575

equation (14) becomes1576

dp = p(1 − p)E(p)dt +
√

p(1 − p)V(p)dWt (S78)1577

Comparing terms with (S74), we see that the speed density of our process is given by1578

m(p) =
1

p(1 − p)V(p)
exp

2

p∫ E(q)
V(q)

dq

 (S79)1579

For general functions E(p) and V(p), it is very often impossible to analytically calculate or pre-1580

dict the behavior of the complete function defined by (S79). However, since we are primarily1581

interested in which trait frequencies p are likely, we can still make analytical progress by exam-1582

ining the derivative dm/dp. If dm/dp is a strictly increasing function of p, then higher values of1583

frequency p are always favored, and species 2 is expected to go extinct more often than species1584

1. Likewise, if dm/dp is a strictly decreasing function of p, lower frequencies of p are favored,1585

and species 1 is expected to go extinct. Lastly, points at which dm/dp = 0 correspond to extrema1586

of the speed density and can thus be used to find the most likely and least likely values of trait1587

frequency in the system.1588

We would therefore like to examine the behavior of dm/dp as a function of p. Differentiating1589

both sides of equation (S79) with respect to p, we find1590

dm
dp

= m(p)
[

2p − 1
p(1 − p)

+ 2
E(p)
V(p)

− 1
V(p)

dV
dp

]
(S80)1591

which is Eq. 15 in the main text.1592

After substituting the functional form of V(p) from equation (S77), this yields (after some1593

lines of algebra):1594

dm
dp

= m(p)
[

2p − 1
p(1 − p)

+ 2
E(p)
V(p)

+
1

NK

dNK

dp
− 1

V(p)

(
κ(p, NK) + (1 − p)

dτ1

dp
+ p

dτ2

dp

)]
(S81)1595

Let us examine each term on the RHS of equation (S81). The first term on the RHS is (2p −1596

1)/p(1 − p). This expression is (anti)-symmetric about p = 0.5 and always drives the system1597
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towards the boundaries of [0, 1]. It is thus uninteresting for calculating the sign of dm/dp.1598

Since V(p) must clearly be non-negative in order for equation (S78) to be well-defined, the1599

second term, E(p)/V(p), always has the same sign as E(p). Equation (S81) tells us that the speed1600

density (and thus the stationary distribution, when it exists) also depends on contributions from1601

the dWt term of equation (S78). We have split this contribution into two separate terms, the third1602

and fourth terms on the RHS of equation (S81), each of which we will examine individually.1603

The third term on the RHS of (S81) captures the effect of the frequency of species 1 on the1604

per-capita growth rate of the population as a whole. Thus, if species 1 is altruistic, mutualistic,1605

or commensal, then dNK/dp will be positive, whereas if the species is spiteful, competitive, or1606

amensal, dNK/dp will be negative. The sign of the third term on the RHS of (S81) thus depends1607

on the nature of the ecological interactions that species 1 is involved in — species that increase the1608

per-capita growth rate of the total population are favored, and those that decrease the per-capita1609

growth rate of the total population are disfavored.1610

The fourth term on the RHS of equation (S81) captures the effects of noise-induced selection1611

acting on differential turnover rates. Since E(p) also has both a 1/V(p) factor and a noise-1612

induced selection term, we are better off substituting the functional form of E(p) from (S76) into1613

equation (S81) and collecting all terms with a 1/V(p) factor so as to collect all terms correspond-1614

ing to selection (both classical and noise-induced). Upon doing this, we obtain1615

dm
dp

= m(p)
[

2p − 1
p(1 − p)

+
1

NK

dNK

dp
+

1
V(p)

(
2KNKs(p, NK) + κ(p, NK)− (1 − p)

dτ1

dp
− p

dτ2

dp

)]
(S82)1616

The interpretations of the first two terms on the RHS of (S82) have already been explained above.1617

Since V(p) is always non-negative, we only need to look at the sign of the expression1618

2KNKs(p, NK) + κ(p, NK)− (1 − p)
dτ1

dp
− p

dτ2

dp
(S83)1619

The first term of (S83) is the effect of classical selection and has the same sign as the selection1620

coefficient s(p, NK). Notice that since this term is O(K) whereas all other terms in equation (S82)1621

are O(1), this term dominates the dynamics when K is large, again indicating that the effects1622

of natural selection dominate in large populations with non-zero selection coefficient. If instead1623

Ks(p, NK) is small, either through a small population size, weak selection (or no selection), or1624

both, the other terms of (S83) play a stronger role. The second term of (S83) is simply the noise-1625

induced selection coefficient κ(p), and is thus positive whenever τ1 < τ2. This term thus causes1626

the probability density function to be biased towards the species with lower per-capita turnover1627

rates. The last two terms of (S83) capture the frequency-dependence of noise-induced selection.1628
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S7 The infinite population limit recovers standard equations of1629

population biology1630

In this section, we show how our SDEs recover several classic equations of population biology in1631

the infinite population size limit.1632

Replicator-mutator equation1633

If w take K → ∞ in (10), we obtain an ODE that reads:1634

dpi

dt
= (wi(x)− w)pi + λ

[
Qi(p)− pi

(
m

∑
j=1

Qj(p)

)]
(S84)1635

The first term of (S84) describes changes due to faithful (non-mutational) replication, and the1636

second describes changes due to mutation. For this reason, equation (S84) is called the replicator-1637

mutator equation in the evolutionary game theory literature, where the individual ‘types’ are1638

interpreted to be pure strategies and the influx rate λ is a mutation rate, denoted by µ. If1639

in addition, each wi(x) is linear in x, meaning we can write wi(x) = ∑j aijxj for some set of1640

constants aij, then we get the replicator-mutator equation for matrix games, and the constants1641

aij form the ‘payoff matrix’. As is well-known, the replicator equation (without mutation) for1642

matrix games with m pure strategies is equivalent to the generalized Lotka-Volterra equations1643

for a community with m − 1 species (Hofbauer and Sigmund, 1998), providing the connection1644

to community ecology. Equation (S84) is also equivalent to Eigen’s quasispecies equation from1645

molecular evolution if each ‘type’ is interpreted as a genetic sequence and each wi(x) is a constant1646

function (Page and Nowak, 2002).1647

(Dynamical) Price equation1648

Taking K → ∞ in equation (26) recovers the Price equation as the infinite population limit. Here,1649

we mean the Price equation as formulated in continuous time with time-varying characters (Lion,1650

2018; Day et al., 2020).1651

d f
dt

= Cov(w, f ) +
(

∂ f
∂t

)
+ λ

(
m

∑
i=1

fiQi(p)− f
m

∑
i=1

Qi(p)

)
(S85)1652

Many authors additionally assume that the quantity f does not itself change over time at the1653

type level, meaning that ∂ fi/∂t ≡ 0 ∀ i and the feedback term thus disappears. This yields a1654

somewhat more familiar equation in continuous time (Lion, 2018). Standard texts also usually1655

use a version formulated in discrete time that is more general for single-step changes, but is1656

dynamically insufficient (Frank, 2012; Queller, 2017).1657
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Fisher’s fundamental theorem of natural selection1658

Taking K → ∞ in (28) and noting that the process tends to a deterministic process as K → ∞, as1659

noted in section S7 (and thus the expectation value in the infinite population case is superfluous),1660

we obtain an ODE:1661

dw
dt

= σ2
w(t) +

(
∂w
∂t

)
(S86)1662

This is Fisher’s fundamental theorem in the presence of ecological feedbacks to fitness (Frank1663

and Slatkin, 1992; Kokko, 2021).1664

Lion 2018’s variance equation1665

Taking K → ∞ in equation (31) yields1666

dσ2
f

dt
= Cov

(
w, ( f − f )2

)
+ 2Cov

(
∂ f
∂t

, f
)
+ λ

[(
m

∑
i=1

( fi − f )2Qi(p)

)
+ σ2

f

m

∑
i=1

Qi(p)

]
(S87)1667

This is precisely equation (14) in Lion, 2018 with influx terms λQi.1668

S8 Recovering some previous studies as special cases1669

In many social evolution models, cooperators are predicted to go extinct in infinite populations1670

but are actually favored by evolution in finite, fluctuating populations, causing a ‘reversal’ in1671

the direction of evolution predicted by natural selection (Houchmandzadeh and Vallade, 2012;1672

Chotibut and Nelson, 2015; Constable et al., 2016; McLeod and Day, 2019). McLeod and Day,1673

2019 have recently shown that such reversals can occur in a wide array of social evolution models1674

due to the same effect that we recognize here as noise-induced selection. Formally, all the models1675

presented in McLeod and Day, 2019 can be recovered in our framework by setting m = 2 and1676

s(x) = −ϵc(x) for a constant ϵ ∈ R and a non-negative function c(x) in our stochastic replicator-1677

mutator equation (Eq. 10). The function T(p) in McLeod and Day, 2019 — a quantity that varies1678

in the various models they study — is precisely the mean turnover τ in our framework.1679

In evolutionary epidemiology, models have shown that reduced virulence is more important1680

than increased transmission rate for pathogen spread in finite, fluctuating populations, especially1681

when the population size is small (Humplik et al., 2014; Parsons et al., 2018; Day et al., 2020).1682

Indeed, if the population is small or selection is weak, slower strains can have higher fixation1683

probabilities than faster strains even if the slower strain has a lower basic reproduction ratio1684

(R0) than its competitor, causing a complete reversal in the direction of evolution predicted in1685
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infinite populations (Parsons et al., 2018). These results have recently been explained in a generic1686

manner using both a replicator-mutator/‘stochastic adaptive dynamics’ approach (Parsons et al.,1687

2018) and a two-species Price equation formalism (Day et al., 2020), though both these papers use1688

assumptions and language particular to evolutionary epidemiology. We note that equation (2.5)1689

in Parsons et al., 2018 is exactly equivalent to our stochastic replicator-mutator equation with no1690

mutation (equation (10) with λ = 0) upto a change in notation upon substituting the specific birth1691

and death rate functions chosen in their paper into our equation (10). Similarly, equation (5.1) in1692

Day et al., 2020 is exactly equivalent to our stochastic Price equation for 2 species (equation (26)1693

with m = 2) if we write out w and τ in terms of per-capita birth and death rates. Our work can1694

therefore be used to recapitulate these results and show that the effects they illustrate are not1695

particular to epidemiological models.1696

S9 An exact solution for the example in the main text with equal1697

growth rate when turnover rates vary linearly with frequency1698

In this section, we provide an exact quasi-stationary distribution for the rate modulation example1699

in which birth and death rates are increased by the same amount (case 1 with ϵb = ϵd). In this1700

case, we have1701

E(p) = − 2ϵd

KNK
(S88)1702

V(p) =
1

KNK
(τ1(p, NK)− 2ϵd p) (S89)1703

For notational convenience, let a = 2ϵd = −κ(p). To study the system, we need a func-1704

tional form for τ1. We assume here (for simplicity) that τ1(p, NK) = bp + c, where b and c are1705

constants. c can be viewed as an ‘intrinsic’ turnover rate, and b as a frequency-dependent com-1706

ponent that may be either positive or negative. We are therefore restricting ourselves to linear1707

frequency dependence of τ1, but allowing both positive and negative frequency-dependence,1708

with the strength of frequency-dependence controlled by |b|. Note that since τ1 is the sum of two1709

rates and p(1 − p)V(p) is the infinitesimal variance of the trait frequency SDE, the parameters1710

a, b, and c must be chosen such that τ1(p) = bp + c > 0, V(p) = (b − a)p + c > 0 ∀ p ∈ [0, 1]1711

for the system to be biologically meaningful. In particular, τ1(0, NK) and τ1(1, NK) must be non-1712

negative, and we must thus have τ1(0, NK) = c ≥ 0 and τ1(1, NK) = b + c > 0. We must also have1713

V(1) > 0, and thus b + c − a ≥ 0. In our new notation, Eq. S88 and S89 become1714

E(p) = − a
KNK

(S90)1715

V(p) =
1

KNK
((b − a)p + c) (S91)1716
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The speed density of the system can be written (from Eq. S79) as1717

m(p) =
1

p(1 − p)V(p)
exp

2

p∫ E(q)
V(q)

dq

1718

⇒ m(p) =
KNK

p(1 − p)((b − a)p + c))
exp

2a

p∫ 1
(b − a)q + c

dq

 (S92)1719

Case 1: No frequency dependence in V(p)1720

If a = b, i.e. the frequency dependence of τ1 is positive with strength exactly equal to 2ϵd, Eq.1721

S92 becomes1722

m(p) =
1

p(1 − p)c
exp

2

p∫ −a
c

dq

 = C
1

p(1 − p)
e−αp (S93)1723

where α = 2a/c > 0 is a positive constant and we use C to denote a constant whose precise value1724

is irrelevant (and thus may change from line to line below — the important thing is that C does1725

not depend on p and thus plays the role of a normalization constant).1726

The shape of the distribution given by Eq. S93 can be thought of as the combination of two1727

components: The term p(1 − p) is symmetric with respect to the transformation p → 1 − p (and1728

thus symmetric about p = 0.5) and thus does not favor either type of individual, whereas e−αp is1729

a strictly decreasing function of p and thus always favors lower frequencies of type 1 individuals.1730

If α is very small, the effect of e−αp is negligible and the distribution of types is approximately1731

a symmetric ‘U-shaped’ parabola centered at 0.5, with p = 0.5 being the least likely frequency.1732

This is the expectation we would have if neutral genetic drift was the only force at play: The1733

distribution is (approximately) symmetric with respect to the transformation p → 1 − p, with1734

p = 0 and p = 1 being the most likely states and p = 0.5 being the least likely state.1735

If instead, α is not small, the function e−αp decays quickly and biases the distribution towards1736

lower values of p. In this case, the function is a distorted U-shape, with the minimum point being1737

somewhere in (1/2, 1). The extent of bias towards lower values of p increases as α increases.1738

Thus, in the case where 2ϵd = dτ1/dp, we can conclude that lower frequencies of type mod-1739

ulators are always more likely in the stationary distribution, and the biasing is stronger as the1740

ratio of the rate modulation (ϵd) to the intrinsic frequency-independent turnover rate (c) in-1741

creases. Note that the shape of the quasi-stationary density (and thus the extent of deviation1742

from neutrality) does not depend on the total population size KNK.1743
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Case 2: Frequency dependence in V(p)1744

Assuming a ̸= b, we can calculate the exponential term in Eq. S92 as1745

exp

2

p∫ E(q)
V(q)

dq

 = exp

−2a

p∫ 1
(b − a)q + c

dq

 (S94)1746

= C exp
(
− 2a

b − a
[log((b − a)p + c)]

)
= C[(b − a)p + c]−

2a
b−a (S95)1747

where we once again use C to denote a multiplicative constant whose precise value is irrelevant.1748

Thus, the speed density S92 is given by1749

m(p) =
C

p(1 − p)
[(b − a)p + c]−(γ+1) (S96)1750

where we have defined γ = 2a/(b − a).1751

S10 An example in which noise-induced selection can never reverse1752

the direction of evolution over short timescales, but may nevertheless1753

affect the stationary distribution1754

Consider a slightly modified version of the example covered in the main text. Consider here two1755

types in which rate modulation decreases the birth rate and increases the death rate of type 11756

individuals. In equations, such modulation can be modelled via the relations:1757

b(ind)
1 (p, NK) = b(ind)

2 (p, NK)− ϵb (S97a)1758

1759

d(ind)
1 (p, NK) = d(ind)

2 (p, NK) + ϵd (S97b)1760

where ϵb and ϵd are non-negative real numbers describing the effect of the ecological rate mod-1761

ulator on the birth and death rates respectively. Note that in this case, ϵb cannot be arbitrarily1762

large: we require ϵb ≤ inf
p∈[0,1]
NK≥0

{b(ind)
2 (p, NK)} to avoid negative birth rates. As in the main text, we1763

can calculate the selection coefficient and noise-induced selection coefficient, to find1764

s(p, NK) = −[ϵb + ϵd] (S98a)1765

1766

κ(p, NK) = ϵb − ϵd (S98b)1767

Here, s is always negative whenever there is some rate modulation in the system (i.e. ϵb and1768

ϵd are not both 0), and thus natural selection always favors type 2 over type 1. Note that here,1769
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when evolution is neutral with respect to natural selection (s = 0), we must have ϵb = ϵd = 0. In1770

this case, b(ind)
1 (p, NK) = b(ind)

2 (p, NK) and d(ind)
1 (p, NK) = d(ind)

2 (p, NK), and thus the two types are1771

exactly equivalent in every respect.1772

As in the main text, we can first examine when the sign of E[dp/dt] is reversed relative to1773

infinite population expectations. Since s < 0, we can use Eq. 14 to say the expected trajectory is1774

in the opposite direction of infinite population predictions if s + κ/KNK > 0. Using Eq. S98, we1775

see that this is equivalent to1776

−[ϵb + ϵd] +
1

KNK
(ϵb − ϵd) > 0 ⇒

(
1 − 1

KNK

)
ϵb +

(
1 +

1
KNK

)
ϵd < 0 (S99)1777

⇒ ϵb

ϵd
< −KNK + 1

KNK − 1
< 0 (S100)1778

Since ϵb and ϵd are both non-negative, so is their ratio, and thus inequality S100 can never be1779

satisfied. We therefore conclude that noise-induced selection cannot reverse the sign of E[dp/dt]1780

relative to infinite population expectations in this case.1781

However, noise-induced selection may still affect the long-term behaviour via the stationary1782

distribution. We see from Eq. 15 that type 1 may be favored via noise-induced selection in the1783

stationary distribution if dV/dp is sufficiently negative. Using the definition of V from Eq. 16b,1784

we see that dV/dp is negative whenever1785

dτ1

dp
< ϵb − ϵd (S101)1786

Note, however, that for this system, since E(p) will always be positive, dV/dp < 0 is a necessary1787

but not a sufficient condition for deviation from infinite population expectations — we also1788

require dV/dp to be large enough in magnitude relative to E(p) to ensure that the RHS of Eq. 151789

as a whole becomes positive.1790

S11 An example of non-neutral competition where evolution does1791

not proceed in the direction of natural selection due to noise-induced1792

effects1793

In this section, we provide an example of resource competition with both natural selection and1794

mutation in which noise-induced selection reverses the direction of evolution predicted by natu-1795

ral selection.1796

Consider a community that contains two types of birds, say type 1 and type 2. These birds1797

compete for limited resources, but in a peculiar manner: Though the two birds feed on different1798

food sources, the trees that type 1 birds use for nesting are the same as those that the type 21799
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birds rely on for food. Both types are territorial and do not tolerate other individuals of either1800

type on either their nesting or feeding sites. Thus, competition between the two types affects the1801

birth rate of type 1 birds (because they can’t find good nesting sites) but the death rate of type1802

2 birds (due to starvation), whereas intratype competition affects the death rate in both cases1803

due to competition for food sources. We also assume that when individuals give birth, they1804

may give birth to offspring of the opposite type (due to mutations) at a rate λ > 0. Thus, the1805

influx rate λ here is a mutation rate, and we will therefore denote it by λ = µ to align with1806

standard notational conventions. Let ni be the number of type i individuals (which may vary1807

over time). Assuming trees and birds are both randomly distributed through the landscape and1808

the population dynamics of birds has linear density dependence, the simplest model that can1809

incorporate these features of resource competition is given by:1810

b1(n1, n2) = n1 − (1 + ϵ)
n1n2

K
+ µn2 ; d1(n1, n2) =

n2
1

K

b2(n1, n2) = n2 + µn1 ; d2(n1, n2) =
n2

2
K

+
n1n2

K

(S102)1811

where K is a carrying capacity for the habitat, similar to Lotka-Volterra competition, and ϵ is a1812

parameter, which as we shall see below, quantifies which type has a competitive advantage.1813

Moving to density space via the change of variables xi = ni/K, letting x = [x1, x2]T, and1814

comparing terms with Eq. 2, we see that the per-capita fitness wi of each type is:1815

w1(x) = 1 − x1 − (1 + ϵ)x2 = 1 − pNK − (1 + ϵ)(1 − p)NK

w2(x) = 1 − x1 − x2 = 1 − pNK − (1 − p)NK
1816

where NK = x1 + x2 is the (scaled) total population size and p = x1/NK is the frequency of type1817

1 individuals in the population. In frequency space, we thus see that the selection coefficient1818

s := w1 − w2 is given by1819

s(p, NK) = −ϵ(1 − p)NK (S103)1820

This calculation makes it clear that ϵ controls the strength and direction of natural selection1821

operating in the system — when ϵ > 0, natural selection favors type 2, whereas when ϵ < 0, type1822

1 is favored. When ϵ = 0, the two types of birds have the same fitness and there is no natural1823

selection operating in the system. If we now compute the per-capita turnover rates τi of each1824

type, we have1825

τ1(x) = 1 + x1 − (1 + ϵ)x2 = 1 + pNK − (1 + ϵ)(1 − p)NK1826

τ2(x) = 1 + x1 + x2 = 1 + NK1827
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and the noise-induced selection coefficient κ := τ2 − τ1 is therefore1828

κ(p, NK) = (2 + ϵ)(1 − p)NK (S104)1829

Note that when ϵ = 0, s vanishes but κ does not, meaning that the system exhibits noise-induced1830

selection but no natural selection. Further, whenever ϵ > 0 or ϵ < −2, s and κ have opposite1831

signs, i.e. natural selection and noise-induced selection act in opposite directions. Here, focusing1832

on the case ϵ > 0, we see from Eq. S103 that natural selection favors type 2, whereas Eq. S1041833

tells us that noise-induced selection favors type 1.1834

Finally, we also have Q1(p) = (1 − p), Q2(p) = p. Substituting all these functional forms into1835

Eq. 10 now tells us (after some algebra) that the frequency of type 1 individuals in the population1836

obeys the SDE1837

dp =

[
p(1 − p)2

[
2
K
− ϵ

(
NK(t)−

1
K

)]
+ µ(1 − 2p)

(
1 − 1

KNK(t)

)]
dt

+
1√

KNK(t)

√
p(1 − p) [1 + NK(t) (1 − (2 + ϵ)(1 − p)2)] + µ [1 − 3p(1 − p)]dWt

(S105)1838

where Wt is a one-dimensional Wiener process. Upon substituting our functional forms of fitness1839

and turnover into Eq. 12, we find that the total scaled total population size NK obeys the SDE1840

1
NK

dNK = [1 + µ − NK (1 + ϵp(1 − p))] dt +
1√

KNK

√
1 + µ + NK (1 − ϵp(1 − p))dWNK

t

(S106)1841

where WNK
t is a one-dimensional Wiener process. We are now in a position to study the behavior1842

of this system.1843

The infinite population limit1844

If we let K → ∞, the SDE for type frequency given by Eq. S105 reduces to an ODE1845

dp
dt

= −ϵNK p(1 − p)2 + µ(1 − 2p) (S107)1846

When there is no mutation and no selection in the system (µ = ϵ = 0), the RHS of Eq. S1071847

vanishes, and thus, any initial trait frequency p0 is expected to remain unchanged forever. If we1848

switch off mutation alone (µ = 0, ϵ ̸= 0), it is easy to check that the type favored by selection1849

will become fixed in the population. Instead, if we switch off selection alone (µ ̸= 0, ϵ = 0),1850

mutations drive the population to a state in which both types are equally prevalent (i.e., p = 0.5).1851

When both selection and mutation are present in the system, the stable fixed point in the infinite1852
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population limit will lie in (0, 1/2) when ϵ > 0, and will lie in (1/2, 1) when ϵ < 0.1853

Deviations from neutrality due to noise-induced selection in finite, fluctuating populations1854

The effects of noise-induced selection on the expected dynamics are clearest when there is no1855

natural selection (ϵ = 0) and no mutation (µ = 0): In this case, the equation for trait frequencies1856

(Eq. S105) becomes1857

dp =
2p(1 − p)2

K
dt +

1√
KNK(t)

√
p(1 − p) [1 + NK(t) (1 − 2(1 − p)2)]dWt (S108)1858

If we now take expectations on both sides, the stochastic integral term vanishes and we ob-1859

tain an ODE for the expected trait frequency in the population. Assuming that derivatives and1860

expectations commute, this ODE takes the form1861

d
dt

E[p] =
2
K

E[p(1 − p)2] (S109)1862

Since the RHS is always positive for p ∈ (0, 1), we conclude that the frequency of type 1 birds is1863

always expected to increase until type 1 becomes fixed in the population. Thus, noise-induced1864

selection, in this case, has led to a deviation from the true neutrality in the expected dynamics1865

— in the infinite population case, any initial trait frequency p0 is expected to remain unchanged1866

forever, whereas for finite, fluctuating populations, assuming p0 ̸∈ {0, 1}, the trait frequency1867

of type 1 birds is expected to increase until type 1 eventually fixes in the population. Note1868

that unlike in neutral drift, type 1 is always expected to be the type that becomes fixed in the1869

population, despite the two types having the same fitness.1870

Reversal of the direction of evolution in finite, fluctuating populations1871

For the birth-death processes of the type we study in this paper, the entire population will1872

go extinct in finite time with probability 1 (Ethier and Kurtz, 1986). Thus, the true stationary1873

distribution for our system is thus the trivial state x1 = x2 = 0, a state at which p is undefined.1874

However, the expected time to extinction is often so large that we can instead speak of the ‘quasi-1875

stationary distribution’ of the stochastic process, obtained by only examining the system before1876

the population goes extinct (Karlin and Taylor, 1981). Thus, we are interested in the behavior of1877

the system in (p, NK) space conditioned on NK > 0. To study the behavior of the trait frequency1878

when the population is far from extinction, we can simply use the naive assumption NK ≡ 1 to1879

arrive at an approximate description of the system. Under this approximation, the probability1880

density πqs(p) of the quasi-stationary distribution is given by (see Supplementary section S6)1881

πqs(p) =
N

G(p)
exp

 p∫
0

F(q)
G(q)

dq

 (S110)1882

73

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580940doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.580940
http://creativecommons.org/licenses/by-nd/4.0/


Supplement to Bhat and Guttal 2024, “Evolution in finite populations”

where N is a normalization constant and F and G are functions given by1883

F(p) := p(1 − p)2 [2 − ϵ (K − 1)] + µ(1 − 2p) (K − 1)

G(p) := p(1 − p)
(
2 − (2 + ϵ)(1 − p)2)+ µ (1 − 3p(1 − p))

(S111)1884

Since the above solution is an approximation, we also conduct exact stochastic individual-based1885

simulations of the complete system defined by Eq. S102 using the Gillespie algorithm. The1886

results of the simulations, as well as the solution predicted by Eq. S110, are plotted for a small1887

ϵ > 0 (corresponding to weak selection against type 1) in figure S1.1888

For low values of K and ϵ, both the stochastic individual-based simulations and the approx-1889

imate solution given by Eq. S110 indicate that noise-induced selection causes the distribution1890

of types in the population to be biased in favor of type 1 (rightmost peak in Fig S1A), a bias1891

that disappears when K and ϵ are high (Fig S1B). To more carefully quantify when type 1 is1892

favored by evolution, we can follow McLeod and Day (2019)’s approach and compute the quan-1893

tity
∫ 1

1/2 πqs(p)dp. This quantity tells us the likelihood of observing the population in a state in1894

which more than half of the individuals are of type 1. Since the infinite population limit from Eq.1895

S107 predicts that p ∈ (0, 1/2) at equilibrium, we can say that the direction of evolution has been1896

reversed relative to infinite population predictions made from natural selection and mutation1897

alone if
∫ 1

1/2 πqs(p)dp ≥ 1/2 in finite populations. The value of
∫ 1

1/2 πqs(p)dp for various values1898

of ϵ and K are plotted in figure S1C. For low values of ϵ (weak selection) and K (small population1899

size),
∫ 1

1/2 πqs(p)dp ≥ 1/2 and thus the direction of evolution has been reversed relative to the1900

predictions of classical natural selection and mutation alone.1901
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Figure S1: Predictions of our resource-competition model for various parameters. The quasi-stationary distribution
has been plotted for (A) K = 500, ϵ = 0.0005, and (B) K = 5000, ϵ = 0.005. Blue points are from 100 independent
Gillespie simulations of the exact birth-death process defined by Eq. S102, each supplied with the initial condition
n1 = n2 = K/2 and allowed to run for 105 timesteps or until the complete population went extinct. The red dotted line
is derived from numerically evaluating the RHS of equation Eq. S110. The solid black line is the infinite population
limit, obtained by solving equation Eq. S107 under the approximation NK ≡ 1. (C) A heatmap of the values of∫ 1

1/2 πqs(p)dp for various values of ϵ and K. If this quantity is greater than 1/2, then type 1 is more likely to be the

dominant species in the population. The white curve indicates parameter values at which
∫ 1

1/2 πqs(p)dp = 0.5, i.e. the
population is expected to contain an equal number of type 1 and type 2 individuals. For low values of ϵ and K, type
1 is likely to be present at a higher frequency than type 2 in the population, despite deterministic natural selection
predicting the opposite. For all plots in this figure, µ = 0.01.
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