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abstract: Theoretical studies from diverse areas of population bi-
ology have shown that demographic stochasticity can substantially
impact evolutionary dynamics in finite populations, including sce-
narios where traits that are disfavored by natural selection can nev-
ertheless increase in frequency through the course of evolution.
Here, we analytically describe the eco-evolutionary dynamics of fi-
nite populations from demographic first principles. We investigate
how noise-induced effects can alter the evolutionary fate of popula-
tions in which total population size may vary stochastically over
time. Starting from a generic birth-death process, we derive a set
of stochastic differential equations (SDEs) that describe the eco-
evolutionary dynamics of a finite population of individuals bearing
discrete traits. Our equations recover well-known descriptions of
evolutionary dynamics, such as the replicator-mutator equation,
the Price equation, and Fisher’s fundamental theorem in the infinite
population limit. For finite populations, our SDEs reveal how sto-
chasticity can predictably bias evolutionary trajectories to favor
certain traits, a phenomenon we call “noise-induced biasing.” We
show that noise-induced biasing acts through two distinct mecha-
nisms, which we call the “direct” and “indirect” mechanisms. While
the direct mechanism can be identified with classic bet-hedging
theory, the indirect mechanism is a more subtle consequence of
frequency- and density-dependent demographic stochasticity. Our
equations reveal that noise-induced biasing may lead to evolution
proceeding in a direction opposite to that predicted by natural selec-
tion in the infinite population limit. By extending and generalizing
some standard equations of population genetics, we thus describe
how demographic stochasticity appears alongside, and interacts with,
the more well-understood forces of natural selection and neutral drift
to determine the eco-evolutionary dynamics of finite populations of
nonconstant size.
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Introduction

Eco-evolutionary population biology has a strong mathe-
matical underpinning and can broadly be captured math-
ematically via a small number of equations, such as the
replicator-mutator equation and the Price equation (Page
and Nowak 2002; Queller 2017; Lion 2018). The Price equa-
tion partitions changes in population composition into mul-
tiple terms, each of which lends itself to a straightforward
interpretation in terms of the high-level evolutionary forces
of selection and mutation, thus providing a useful mathe-
matical framework for describing how populations change
over time (Frank 2012). The Price equation also leads to a
number of simple yet insightful fundamental theorems of
population biology and unifies several seemingly disjointed
formal structures under a single theoretical banner (Quel-
ler 2017; Lion 2018; Lehtonen 2020a; Luque and Baravalle
2021). However, the replicator-mutator equation, the Price
equation, and related fundamental theorems of evolution-
ary dynamics are usually formulated in a deterministic set-
ting that neglects stochastic fluctuations due to finite pop-
ulation effects (Page and Nowak 2002; Queller 2017; Lion
2018).

Today, we increasingly recognize that incorporating
the finite and stochastic nature of the real world routinely
has much stronger consequences than simply “adding
noise” to deterministic expectations and can cause quali-
tative changes in the behavior of diverse biological sys-
tems (Horsthemke and Lefever 1984; Black and McKane
2012; Boettiger 2018; Jhawar et al. 2020; Majumder et al.
2021; DeLong and Cressler 2023; Yamamichi et al. 2023;
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Wang et al. 2023). In ecology and evolution, stochastic
models need not exhibit phenomena predicted by their de-
terministic analogues (Proulx and Day 2005; Johansson
and Ripa 2006; Black and McKane 2012; Débarre and Otto
2016). They may also exhibit novel phenomena not pre-
dicted by deterministic models (Rogers and McKane 2015;
Constable et al. 2016; Joshi and Guttal 2018; DeLong and
Cressler 2023; Wang et al. 2023).

A striking example of such novel phenomena is the
complete “reversal” of evolutionary trajectories (relative to
the expectations of infinite population models) that is seen
in somefinite population eco-evolutionary models (Houch-
mandzadeh and Vallade 2012; Constable et al. 2016;
McLeod and Day 2019a; Mazzolini and Grilli 2023). For
example, in public goods games, the production of a costly
public good is susceptible to invasion by “cheaters” who
use the public good but do not produce it. Because of this,
standard (deterministic) evolutionary game theory pre-
dicts that producers should eventually become extinct in
well-mixed populations. However, in finite fluctuating pop-
ulations, producers not only persist but also outcompete
nonproducers (Constable et al. 2016; McLeod and Day
2019a). This phenomenon of evolution proceeding in the
direction of the classically disfavored type that leads to
the reversal of the prediction of deterministic natural se-
lection has been dubbed “noise-induced selection” (Week
et al. 2021). Noise-induced effects have been seen in sev-
eral models in fields as diverse as sex chromosome evolution
(Veller et al. 2017; Saunders et al. 2018), cell cycle dynam-
ics (Wodarz et al. 2017), social evolution (Houchman-
dzadeh and Vallade 2012; Chotibut and Nelson 2015;
Constable et al. 2016; McLeod and Day 2019a), and epide-
miology (Kogan et al. 2014; Humplik et al. 2014; Parsons
et al. 2018; McLeod and Day 2019b; Day et al. 2020). De-
spite the ubiquity of the phenomenon of qualitative noise-
induced effects on evolutionary trajectories, we currently
lack a description of how classic equations of evolutionary
biology, such as the replicator-mutator equation, the Price
equation, and Fisher’s fundamental theorem, are affected
by such demographic stochasticity.

Two qualitatively different forms of stochasticity are
important for eco-evolutionary dynamics—environmen-
tal stochasticity from fluctuations in environmental fac-
tors such as temperature and precipitation, and demo-
graphic stochasticity due to stochasticity in birth and
death rates in finite populations (Lande 1993; Shoemaker
et al. 2020). Bet-hedging theory, a branch of evolutionary
ecology that aims to build general theories that capture
the effects of stochasticity on eco-evolutionary dynamics
(Seger and Brockmann 1987; Frank and Slatkin 1990;
Starrfelt and Kokko 2012), has typically worked with both
demographic and environmental stochasticity (Gillespie
1977; Seger and Brockmann 1987; Frank and Slatkin
1990; Olofsson et al. 2009; Childs et al. 2010; Starrfelt
and Kokko 2012). On the other hand, models of noise-
induced effects and noise-induced selection model sto-
chasticity as arising from the inherent probabilistic nature
of birth and death of organisms and are thus concerned
only with demographic stochasticity (Parsons et al. 2010;
Houchmandzadeh and Vallade 2012; Constable et al. 2016;
Parsons et al. 2018; McLeod and Day 2019a; Day et al.
2020). Because of this, it is often unclear a priori under
what situations these noise-induced effects become impor-
tant for evolutionary dynamics (Shoemaker et al. 2020;
Yamamichi et al. 2023). For example, how does noise-
induced selection interact with genetic drift or natural selec-
tion? Are noise-induced selection and bet hedging essen-
tially the same effect that has been spoken about using
different terminology (Parsons et al. 2010), or are there
multiple distinct phenomena at play (Wang et al. 2023)?
This article focuses on demographic stochasticity to de-
scribe how finite population size can affect eco-evolutionary
outcomes.

Specifically, we derive general equations for the dy-
namics of finite fluctuating populations evolving in con-
tinuous time starting from mechanistic first principles
via a stochastic birth-death process (fig. 1). By starting
from individual-level ecological rules for birth and death
and systematically describing population-level dynamics,
we relax the assumption of constant (effective) popula-
tion size that appears in classic finite population models
of evolution, such as the Wright-Fisher or Moran models
(Lambert 2010; fig. 1). Such a mechanistic approach is
also thought to be a more fundamental description of eco-
evolutionary dynamics (Lambert 2010; Doebeli et al. 2017).
The equations we derive reduce to well-known results, such
as the replicator-mutator equation and the Price equation
in the infinite population limit, thus illustrating consistency
with the known formal structures of eco-evolutionary pop-
ulation dynamics (Queller 2017; Lion 2018). For finite pop-
ulations, these same equations also provide a generic de-
scription and synthesis of the noise-induced effects of finite
population size and their consequences for eco-evolutionary
population dynamics.

Our systematic derivation provides relations between
ecological quantities, such as the expected population
growth rate and the variance in population growth rate.
Our equations also describe how directional stochastic
effects interact with more standard evolutionary forces,
such as natural selection and genetic drift. Using these
equations, we synthesize the connections between noise-
induced effects on population dynamics, including the
Gillespie effect of bet-hedging theory (Gillespie 1977), noise-
induced effects in ecological population models (Constable
et al. 2016; Parsons et al. 2018), drift-induced selection(Veller
et al. 2017; Saunders et al. 2018), noise-induced selection
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(Week et al. 2021), and the effects of evolutionary noise
(McLeod and Day 2019a, 2019b).
A Stochastic Birth-Death Process
for Population Dynamics

We consider a well-mixed population that can contain up
to m different types of individual entities. For example, a
gene may have m different alleles, individuals within a
species may come in one of m phenotypes, or a commu-
nity may havem different species; we refer to each distinct
variant of an entity as a “type.” Unlike many classic sto-
chastic formulations in evolutionary theory (Crow and
Kimura 1970; Lande 1976; Kimura and Ohta 1974), we
do not assume a fixed or deterministically varying (effec-
tive) population size. Instead, we allow the total popula-
tion size to emerge naturally, and thus fluctuate stochas-
tically, from the stochastic birth and death processes (fig. 1).
Description of the Process

A population consisting of up to m different kinds of en-
tities can be completely characterized by specifying the num-
ber of individuals of each type of entity. Thus, the state
of the population at a given time t is an m-dimensional
vector of the form n p [n1(t), n2(t), ::: , nm(t)]T, where
ni(t) is the number of individuals of type i. We use
N(t) p

P
ini(t) to denote the total population size at

time t. Each ni(t) changes stochastically via a birth-
death process, as we describe below. Since N(t) is the
sum of m stochastically fluctuating quantities, the total
population size N(t) also experiences stochastic fluctua-
tions and is thus nonconstant in our model. We use the
term “fluctuating populations” henceforth to refer to pop-
ulations of nonconstant size that experience stochastic
fluctuations in this manner.

We assume that the birth and death rate of each type
in the population depends only on the state of the pop-
ulation (the vector n) and thus neglect any potential
contributions from a temporally varying external envi-
ronment. Our model unfolds in continuous time, and
we assume that the probability of two or more births
(or deaths) occurring at the same instant is negligible.
For each type i ∈ f1, 2, ::: ,mg, we denote the birth rate
and death rate by bi(n) and di(n), respectively. We as-
sume that the birth and death rates at the population
level scale with the total population size such that bi(n)
and bi(n) are of the order of N(t). Furthermore, we as-
sume that there exists a carrying capacity or, more gener-
ally, a population size measure (Czuppon and Traulsen
             
1. Well-mixed population

comprising finitely many

 individuals who vary in arbitrarily

many discrete, heritable traits

2. Environment with a fixed,

finite carrying capacity K

3. Total population size is finite

and varies stochastically

 according to generic

demographic rules (step II)

  I. Biological/Ecological Setting

.....

.....

.....

             
1. A generic density-dependent

stochastic birth-death process.

Population changes in units of

one individual.

2. Birth may be with or without

mutations. Per-capita birth and

death rates can be defined.

3. Ecological interactions within

and between types may be very

complicated as long as they obey

certain mathematical scaling

assumptions (see section S1).

 II. Demographic processes at the individual level

Time

             
1. Write down a master equation

describing how the probability

of finding the system in a given

state varies over time

2. Apply a system-size expansion

assuming K is large but finite

to move from population number

to population density. This yields

an Itô stochastic differential

equation (SDE) for how

population densities vary over time

  III. Deriving population-level dynamics

Time

             
1. Trait frequencies change

over time (A generalized

replicator-mutator equation
-  Eqn 5)

2. Statistical mean value of

any quantity in the population

changes over time (A

generalized Price equation
- Eqn 12)

3. Statistical variance of any

quantity in the population

changes over time (Eqn 17)

  IV. Eco-evolutionary dynamics of finite populations
Using Itô stochastic calculus, derive equations that describe how:

Figure 1: Outline of the approach we adopt in this article.
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2021) K 1 0 that imposes a bound on population growth
rate such that the growth rate of the total population size
N(t) is expected to be negative whenever N(t) 1 K
(box 1).

Given the per capita birth rates b(ind)
i (x) and per capita

death rates d(ind)
i (x) of each type (box 1), we define the

Malthusian fitness of the ith type as

wi(x) ≔ b(ind)
i (x) 2 d(ind)

i (x) ð1Þ
and the per capita turnover rate of the ith type as

ti(x) ≔ b(ind)
i (x) 1 d(ind)

i (x): ð2Þ
The quantity wi(x) describes the per capita growth rate

of type i individuals in a population x, and ti(x) describes
the total rate of stochastic changes (through both births
and deaths) to the density of type i individuals. It is nota-
ble that both wi and ti depend on the state of the popula-
tion as a whole (i.e., x) and not just on the density of the
focal type. Thus, in general both the fitness and the turn-
over rate in our model may be both density and frequency
dependent.
Fundamental Equations of Eco-Evolutionary
Dynamics

Ecological Dynamics: Changes in Population Density

Having described the key demographic processes via a ge-
neric birth and death process, we now proceed to under-
stand how the population density vector x changes over
time.

Recall that the stochastic birth-death process changes
in units of 1=K in density space. Thus, if K is large, each
individual contributes a negligible amount to the popula-
tion density, and the discontinuous jumps due to individual-
level births or deaths in units of 1=K can be approximated
as small continuous changes in population density x. In
section S1 of the supplemental PDF, we use a formal ver-
sion of this intuitive idea via a system size expansion
Box 1: Assumptions on the birth and death rates

Scaling assumptions. Mathematically, we assume that we can find O(1) functions b(K)
i and d(K)

i such that we can
write

bi(n) p Kb(K)
i (n=K),

di(n) p Kd(K)
i (n=K):

ðiÞ

We can now define a notion of population density x p n=K by dividing the population number by the population
size measure. We assume the stochastic process scales such that population densities remain well defined in the
infinite population size limit (K → ∞). Thus, we consider the limit of infinite population sizes but finite population
densities, the usual domain of deterministic equations of population biology, such as the Lotka-Volterra equation
and logistic equation. We explain the concept of the infinite population size limit in more detail in section S1.2 of
the supplemental PDF.

Functional forms and per capita rates. We assume that the birth and death rate functions have the functional
form

b(K)
i (x) p xib

(ind)
i (x),

d(K)
i (x) p xid

(ind)
i (x),

ðiiÞ

where b(ind)
i (x) and d(ind)

i (x) are nonnegative functions that respectively describe the per capita birth and death rate of
type i individuals. In general, the birth rate of type i individuals may contain a component that does not depend
purely multiplicatively on the current density xi of type i: for example, when xi p 0 (i.e., there are no type i indi-
viduals in the population), individuals of type i may still be born through mutations of other types or immigration
from other sources (gene flow). We account for this possibility via an additional influx term in section S1.1 of the
supplemental PDF. Since such an influx term is not majorly affected by stochasticity (sec. S2 of the supplemental
PDF), we do not include it in the main text for the sake of conceptual clarity.

We emphasize that these birth and death rates can incorporate complicated interactions, but as we will see, the
particular forms of these rate functions do not matter for our purposes as long as the mathematical scaling
assumptions in equation (i) are met.
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(Ethier and Kurtz 1986, chap. 11; Van Kampen 1981,
chap. 10; Black and McKane 2012; Czuppon and Traulsen
2021) to derive a continuous description of the stochastic
process for population densities. This continuous descrip-
tion takes the form of an Itô stochastic differential equa-
tion (SDE) that says that the density of the ith type changes
according to

dxi p xiwi(x)dt 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xiti(x)
K

r
dW (i)

t , ð3Þ

where each W (i)
t is a one-dimensional Wiener process

(standard Brownian motion). Informally, dW (i)
t can be

thought of as a normally distributed random variable with
mean 0 and variance dt.

The first and second terms on the right-hand side
(RHS) of equation (3) respectively provide the so-called
infinitesimal mean and infinitesimal variance of the sto-
chastic process xi(t) that satisfies equation (3) (Karlin and
Taylor 1981; Czuppon and Traulsen 2021). Informally,
the infinitesimal mean and variance can be understood
as follows: if we imagine that the population density of
type i changes from xi to xi 1 dxi over a very small (in-
finitesimal) time interval dt, we can (informally) view
dxi as a random variable. In that case, the expected den-
sity change E[dxi] and the variance in the change V[dxi]
are respectively given by

E[dxi] p xiwi(x), ð4aÞ

V[dxi] p
xiti(x)
K

: ð4bÞ

Thus, the Malthusian fitness wi controls the expected
change in population density, whereas the turnover rate
ti (which is also a measure of the total number of events
experienced by type i in a given time interval) controls
the variance in the change in population density.

Equation (3) describes the ecological population dy-
namics. To study the evolutionary dynamics of finite pop-
ulations, we need to move from population densities to
trait frequencies by defining some statistical quantities
to describe how traits are distributed in the population
(box 2). We will see that this seemingly innocuous obser-
vation has important consequences when population size
is nonconstant.
Box 2: Statistical measures for population-level quantities

Given any state x(t) that describes our population at time t, let us first define the total (scaled) population size
(NK(t)) and the frequency pi(t) of each type i in the population at time t as

NK(t) ≔
Xm
ip1

xi(t) p
N(t)
K

,

pi(t) ≔
ni(t)
N(t)

p
xi(t)
NK(t)

:

ðiiiÞ

Here, NK(t) is an O(1) quantity, since the total population size N(t) p KNK(t) is O(K).
Note that the frequency vector is subject to the constraint

P
ipi p 1, and we thus only need to study the system

using the m variables [p1, p2, ::: , pm21,NK]. We are often interested in tracking the effects of evolution on quantities
described at a population level. To facilitate this, let f be any quantity that can be defined at the type level, such as
phenotype or fitness, with a (possibly time-dependent) value f i ∈ R for the ith type. Recall that we defined m dis-
crete types in the population on the basis that individuals within each type can be approximated as identical. Now,
the statistical mean value of such a quantity in the population [p1, p2, ::: , pm21], which we denote by �f , is given by

�f (t) ≔
Xm
ip1

f ipi, ðivÞ

while the statistical covariance of two such quantities f and g in the population is given by

Cov( f , g) ≔ fg 2 �f �g : ðvÞ
Last, the statistical variance of a quantity f in the population is given by j2

f ≔ Cov( f , f ). It is important to recognize
that these statistical quantities are distinct from and independent of the probabilistic expectation, variance, and co-
variance obtained by integrating over realizations in the underlying probability space. We will denote this latter
expectation and variance by E[⋅] and V[⋅], respectively, for clarity.
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Replicator Equation for Finite Fluctuating Populations

We now use Itô calculus to derive equations for the evo-
lutionary dynamics of trait frequencies from equation (3),
our SDE for population densities. Letting �w p

P
iwipi

and �t p
P

itipi be the average population fitness and
the average population turnover respectively, we show
in section S2 of the supplemental PDF that pi, the fre-
quency of the ith type in population x(t), changes ac-
cording to the following equation (also see Parsons et al.
2010, eq. [7]; Kuosmanen et al. 2022, eq. [1]):

dpi(t) p

�
(wi(p,NK) 2 �w)pi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

natural selection
ðhigher w than mean

is betterÞ

2
1

KNK(t)
(ti(p,NK) 2 �t)pi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

noise‐induced selection
ðlower t than mean is betterÞ

�
 dt

1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KNK(t)
p dW (i)

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
stochastic fluctuations

ðnondirectional
over small timescalesÞ

,

ð5Þ
where W (i)

p is a stochastic integral term given by

dW (i)
p ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi(1 2 pi)

2ti 1 p2
i

X
j(i

tjpj

 !vuut  dW (i)
t ð6Þ

and each W (i)
t is a one-dimensional Wiener process. An

analogous equation has also been derived for stochastic
SIR systems (Parsons et al. 2018, eq. [2.5]). The first term
of equation (5) represents the effect of natural selection
for increased (Malthusian) fitness. Equation (5), when
derived with mutation terms (eq. [S29]), recovers the
replicator-mutator equation (eq. [6] in Lion 2018) in the
infinite population (K → ∞) limit (see sec. S7 of the sup-
plemental PDF), and without mutation it recovers the
standard replicator equation.

Importantly, finite populations experience a directional
force dependent on ti(x), the per capita turnover rate
of type i, that cannot be captured in infinite population
models but appears in the second term on the RHS of
equation (5) (Parsons and Quince 2007; Parsons et al.
2010; Week et al. 2021; Kuosmanen et al. 2022; Bhat 2024).
This term shows that the effect of differential turnover rates
is mathematically similar to that of differential fitness, but
it acts in the opposite direction—a higher relative ti leads to
a decrease in frequency (notice the minus sign before the
second term on the RHS of eq. [5]). For this reason, the
effect has been termed “noise-induced selection” (Week
et al. 2021), although similar ideas have been known under
the names “bet hedging” and “Gillespie effect” in the evo-
lutionary ecology literature (Gillespie 1974, 1977; Frank

(5)
and Slatkin 1990; Starrfelt and Kokko 2012; Veller et al.
2017; see box 4). The same effect has also been noticed
in the epidemiology literature (Kogan et al. 2014; Parsons
et al. 2018; Day et al. 2020). Noise-induced selection can
be heuristically understood as a stochastic selection for re-
duced variance in changes in population density (box 3).

Finally, the last term describes the effects of stochastic
fluctuations due to the finite size of the population and
shows the 1=

ffiffiffiffiffiffiffiffiffiffi
KNK

p
scaling that is typical of demographic

stochasticity. Although this last term vanishes upon tak-
ing probabilistic expectations (and is hence nondirectional
in the short term), it may bias trait frequency distributions
by affecting the amount of time spent in different states, as
we illustrate in the next section.

To complete the description of the system, we also re-
quire an equation for the total scaled population size
NK p

P
ixi. Upon noting that dNK p

P
idxi, using equa-

tion (3) for dxi, and dividing both sides by NK, we find

1
NK

dNK p �w(t)dt 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t(t)

KNK(t)

s
dWNK

t , ð7Þ

where WNK

t is a one-dimensional Wiener process and we
have used the representation of noise terms presented in
section S5 of the supplemental PDF. Thus, fitness affects
only the infinitesimal mean, and turnover rate affects
only the infinitesimal variance of the total population size.
Note that the left-hand side of equation (7) is simply the
rate of change of log(NK), that is, the rate of change of
the (scaled) population size NK when viewed on a logarith-
mic scale.

A Special Case: Two Interacting Types. To illustrate the
way stochasticity affects evolutionary dynamics in finite
fluctuating populations, we consider the simple case of
two interacting types (i.e., m p 2). Letting p p p1 be the
frequency of type 1 individuals in the population, we see
from equation (5) that our two-type population obeys the
equations

dp p (w1 2 w2)p(1 2 p) 2
1

KNK

(t1 2 t2)p(1 2 p)

� �
dt ð8aÞ

1
1ffiffiffiffiffiffiffiffiffiffi
KNK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1 2 p) t1 1 (t2 2 t1)p½ �

p
dWt ,

1
NK

dNK p �w(t)dt 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t(t)

KNK(t)

s
dWNK

t ,

ð8bÞ

where Wt and WNK

t are one-dimensional Wiener processes.
We can now identify the (frequency-dependent) se-

lection coefficient s(p,NK) ≔ w1(p,NK) 2 w2(p,NK) from
classic population genetics. The selection coefficient quan-
tifies the direction and strength of natural selection in
the system—a positive (negative) value of s indicates that

(8a)

(8b)
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Box 3: A heuristic explanation of noise-induced selection

One key mechanism through which demographic stochasticity can affect evolutionary dynamics is by biasing
evolutionary trajectories toward types with lower turnover rates, even if these types have the same (or even lower)
fitness than other types in the population. Here, we explain this mechanism via an intuitive argument that has the
same flavor as arguments seen in the bet-hedging literature (Gillespie 1977; Frank and Slatkin 1990; Starrfelt and
Kokko 2012).

To illustrate the idea via an example, imagine a system consisting of two types of individuals, 1 and 2, that have
equal fitness but unequal turnover rates; without loss of generality, assume t1 1 t2. Let us further assume that both
types have the same density x0. From equation (4), we see that, in our example, although the two types of indi-
viduals have the same expected change in population density, type 1 individuals have a greater variance in the
changes in density than type 2 individuals.

Since evolution is defined as changes in trait frequencies, we transform variables from population density to trait
frequency to see how differential variance affects evolutionary trajectories. This is done via the transformation

pi p
xi

xi 1
X
j(i

xj

for any ​ fixed i ∈ f0, 1, 2, ::: ,mg: ðviÞ

Observe now that frequency (pi) is a concave function of density xi (eq. [vi]). Due to concavity, equivalent changes
in density do not correspond to equivalent changes in frequency. Instead, a result mathematically known as Jensen’s
inequality and diagrammatically represented in box figure 1 applies.

An increase in density leads to a relatively smaller increase in frequency, whereas an equivalent decrease in den-
sity leads to a larger decrease in frequency. This implies that stochastic reductions in density have a higher cost
(decrease in frequency) than the benefit (increase in frequency) conferred by a numerically equivalent increase in
density (box fig. 1). Thus, variance in the density process leads to a net cost in frequency space, and all else being
equal, a greater variance comes with a greater cost. Types with lower turnover rates (corresponding to lower in-
finitesimal variance in eq. [3]) are thus favored.

Density of ith type
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Box Figure 1: Diagrammatic representation of the consequences of demographic stochasticity when total population size can vary.
The gray curve represents the transformation from population densities to trait frequencies via equation (vi). The ellipses are
representations of possible changes in population composition for two types with the same fitness and same initial density but dif-
ferent variances (yellow 1 blue). The center of the ellipse represents the infinitesimal mean of the density process, the major axis
captures the infinitesimal variance, and the colored region is thus representative of all possible changes given that an event (birth
or death) has occurred. Reductions in density have a stronger effect on frequency than increases in density, and due to this the
expected frequency (centers of ellipses on the y-axis) after an event has occurred is less than the initial frequency p0 even if the
expected density (centers of ellipses on the x-axis) coincides with the initial density x0. Types with a larger variance in the density
process (yellow ellipse in the figure) experience a greater reduction in expected frequency relative to types with a lower variance (blue
ellipse). Similar figures, with the x- and y-axes being absolute fitness and relative fitness, respectively, appear in expositions of bet
hedging (e.g., Frank and Slatkin 1990; Starrfelt and Kokko 2012). In our figure, the axes are population density and trait frequency,
respectively.
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type 1 individuals are favored (disfavored) by natural
selection.

Equation (8a) also motivates the definition of an anal-
ogous noise-induced selection coefficient k(p,NK) ≔ t2(p,
NK) 2 t1(p,NK) to quantify the direction and strength of
noise-induced selection. If type 1 has a lower turnover rate,
k(p,NK) 1 0, and thus type 1 is favored by noise-induced
selection.

With this notation, equation (8a) becomes

dp p p(1 2 p) s(p,NK) 1
k(p,NK)
KNK

� �
dt

1
1ffiffiffiffiffiffiffiffiffiffi
KNK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1 2 p) t1 1 pk(p,NK)ð Þ

p
dWt ,

ð9Þ

where we see that the selection coefficient s(p,NK) affects
the infinitesimal mean (dt term) of equation (9) and the
noise-induced selection coefficient k(p,NK) affects both
the infinitesimal mean and the infinitesimal variance. Note
that fitness only enters into the population dynamics via
the selection coefficient s, whereas turnover also appears
via t1 in the second term on the RHS of equation (9). In
other words, only the relative fitness or the difference w12
w2, but not the absolute value of the fitness wi, matters for
the deterministic dynamics. In contrast, the functional
form and absolute value of the per capita turnover rate
does affect the stochastic dynamics of the system via the
second term on the RHS of equation (9).

Demographic stochasticity can also affect popula-
tion dynamics through the second term on the RHS of
equation (9) due to turnover-dependent stochastic effects
(McLeod and Day 2019a). To study these effects, we will
examine the speed density m (Karlin and Taylor 1981;
Czuppon and Traulsen 2021) of the stochastic process de-
scribed by equation (9). As we explain in section S6 of the
supplemental PDF, the speed density m(p0) at the point p0

is a measure of the amount of time the population spends
in the “immediate neighborhood” of the state p0 (formally,
it is proportional to the amount of time spent in the interval
(p2 ϵ, p1 ϵ) in the limit ϵ → 0; see Karlin and Taylor
1981, chap. 15, remark 3.2). When a stationary distribution
or quasi-stationary distribution (Collet et al. 2013) exists, it
is proportional to the speed density (Karlin and Taylor
1981, chap. 15, eq. [5.34], along with chap. 15, eq. [3.10];
Collet et al. 2013, theorem 6.4), and the speed density thus
describes the trait frequency distribution at (quasi) station-
arity in such cases. In section S6 of the supplemental PDF,
we show (eq. [S83]) that the speed density m(p) obeys the
equation

dm
dp

p m(p)

�
2p2 1
p(1 2 p)|fflfflfflffl{zfflfflfflffl}

antisymmetric
about p p 0:5

1 2
E(p)
V(p)|fflffl{zfflffl}

same sign as
first term on

RHS of eq:ð9Þ

2
1

V(p)
dV
dp|fflfflfflffl{zfflfflfflffl}

contributions
from second term
on RHS of eq: ð9Þ

�
,

ð10Þ
where

E(p,NK) p s(p,NK) 1
1

KNK

k(p,NK), ð11aÞ

V(p,NK) p
1

KNK

t1 p,NKð Þ1 pk p,NKð Þð Þ: ð11bÞ

The sign of dm=dp tells us whether the system spends
more time in states in which type 1 is overrepresented (pos-
itive meaning that type 1 is favored), and the points at
which dm=dp p 0 tell us about the states that are most
likely/least likely to be observed before fixation/extinction
has taken place (McLeod and Day 2019a; Majumder
et al. 2021). The first term on the RHS of equation (10) is
antisymmetric about p p 0:5. In other words, if we change
p to (1 2 p) (track type 2 instead of type 1), the term retains
the same magnitude but has the opposite sign. Thus, the
term does not contribute to directional effects and can be
ignored for our purposes. Biologically, the term is smallest
at p p 0:5 and symmetrically larger as one moves toward
the boundaries, and thus it can be thought of as capturing
the effect of neutral genetic drift in pushing trait frequency
p to the boundaries of [0, 1].

The second term of equation (10) represents the balance
between classical selection and noise-induced selection.
Box 3 (Continued )

The argument we provide here is particular to populations of nonconstant size. To see this, assume that the total
(scaled) population size

P
ixi is a constant N 1 0. The transformation in equation (vi) then becomes

pi p
xi

xi 1
X
j(i

xj

p
xi

N ðviiÞ

and is now simply a linear rescaling of xi. The asymmetry between increases in density and decreases in density thus
disappears. In other words, the mechanism that we identified above no longer operates for constant populations.
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Since both s and k are O(1) functions, natural selection will
tend to dominate E(p) when the total population size KNK

is large. Additionally, if s and k are of similar magnitude
(i.e., the strength of natural selection is comparable to the
strength of the Gillespie effect), natural selection will still
dominate the sign of E(p), since the total population size
KNK must be greater than 1. However, noise-induced selec-
tion can qualitatively affect evolutionary dynamics if differ-
ences in Malthusian fitnesses are close to zero (i.e., natural
selection is weak, jsj ≪ 1) or if total population size KNK is
small (Parsons et al. 2010, 2018). We also show this explic-
itly using an example in box 5.

Equation (10) also tells us that noise-induced selection
(explained heuristically in box 3) is not the only way in
which demographic stochasticity can bias trait distribu-
tions. Instead, the speed density is also profoundly af-
fected by the noise terms in equation (9), as captured by
the last term on the RHS of equation (10). In particular,
even when the first term on the RHS of equation (9) va-
nishes or acts in the same direction as classical selection,
Box 4: Two distinct nonneutral effects of demographic stochasticity

Demographic stochasticity can cause certain types to be systematically overrepresented in the population rela-
tive to infinite population expectations, even if the fitness of these focal types is the same as (or lower than) the
fitness of other types in the population. Since such biases in the trait distribution are induced purely by sto-
chasticity and do not appear in deterministic models, we call this phenomenon “noise-induced biasing.” Our
equations reveal that noise-induced biasing can occur through two distinct mechanisms. In this box, we provide
a summary of the connections and delineations between the two mechanisms.

1. The direct mechanism selects for reduced variance in changes in population density (Gillespie 1974,
1977). This mechanism appears in the deterministic term (dt term) of the replicator equation (eq. [5])
and is detectable as a systematic deviation of the expected trajectory E[dp=dt] from the infinite popula-
tion prediction (Parsons et al. 2010, 2018). The direct mechanism can be identified with the Gillespie
effect from the bet-hedging literature (Gillespie 1974) and is obtained as a balance between natural se-
lection for increased ecological growth rate and a stochastic selection for reduced variance in changes in
population densities (see box 3). Since the direct mechanism looks mathematically very similar to the
force of natural selection (compare the first and second terms on the RHS of eq. [5]), it has also been
called “noise-induced selection” in the literature (Week et al. 2021). Noise-induced selection in this sense
is thus a version of classical evolutionary bet hedging (Frank and Slatkin 1990; Starrfelt and Kokko 2012)
in an explicitly demographic, dynamical context. Note that unlike in bet-hedging models, w and t (and
thus s and k) are derived from the underlying demographic processes.

2. The indirect mechanism appears as an apparent selection for reduced variance in changes in trait fre-
quency (McLeod and Day 2019a). The effects of demographic stochasticity, in this case, appear in the
stochastic term (dW term) of the replicator equation (eq. [5]) and affect the time spent at various con-
figurations and thus, indirectly, the probability of observing a polymorphic population in a particular
configuration (p1, p2, ::: , pm21,NK). The indirect mechanism results from frequency dependence in the var-
iance of changes in trait frequencies and can be thought of as analogous to frequency-dependent viscos-
ity; populations tend to accumulate in those configurations that lead to slower changes in population
composition, and we are thus more likely to observe the population in those configurations that make
the rate of change of the population slower. The strength of indirect noise-induced biasing varies inversely
with (the square root of) population size, and the direction of the effect depends on the frequency depen-
dence of the per capita turnover rates ti.
Unlike natural selection, the balance between noise-induced biasing (through either mechanism) and genetic drift
in the absence of natural selection does not depend on the total population size. Instead, it is determined by the
details of the demographic processes occurring in the population. If different types have different turnover rates,
the direct mechanism (noise-induced selection) operates, and if some types are associated with lower variance in
the change in trait frequencies, the indirect mechanism operates. Note that this observation means that noise-
induced biasing, via both direct and indirect mechanisms, need not operate or be a significant force in small pop-
ulations, depending on demographic details.
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Box 5: An example: noise-induced biasing with two competing types

Consider a population comprised of two competing types of individuals (denoted 1 and 2). For pedagogical clar-
ity, we assume that the birth and death rates of type 1 are simply shifted from those of type 2 by constants ϵb and ϵd
respectively; that is,

b(ind)
1 (p,NK) p b(ind)

2 (p,NK) 1 ϵb and d(ind)
1 (p,NK) p d(ind)

2 (p,NK) 1 ϵd: ðviiiÞ
We provide potential biological interpretations of this model in terms of either ecological rate modulators
(Fronhofer et al. 2023) or competing pathogen strains (Parsons et al. 2018) in section S10 of the supplemental
PDF. Using the definitions of the selection coefficient (s) and noise-induced selection coefficient (k), we find

s(p,NK) p ϵb 2 ϵd and k(p,NK) p 2[ϵb 1 ϵd]: ðixÞ
Equation (ix) shows that all else being equal, reducing the death rate leads to a more favorable evolutionary out-
come than increasing the birth rate by the same amount (also see McLeod and Day 2019a; Raatz and Traulsen
2023). We now explain the subtle ways in which demographic stochasticity biases evolutionary dynamics.

Noise-induced biasing in the absence of natural selection. Let us assume that ϵb p ϵd p ϵ. This corresponds to a
faster pace of life in type 1 relative to type 2. From equation (ix), we see that s(p,NK) p 0, and thus the two types
have equal fitness. In the absence of natural selection, a given initial frequency remains unchanged over time in
infinitely large populations. In finite populations experiencing only neutral genetic drift, we expect the probability
of fixation of a type to be proportional to its initial frequency. The effects of noise-induced biasing through the
direct mechanism (noise-induced selection) can be observed by looking at the change in the expected frequency
E[p], which from equation (9) follows:

d
dt

E[p] p E
k(p,NK)
NK

p(1 2 p)

� �
p 2

2ϵ
KNK

E[p(1 2 p)]: ðxÞ

Since the RHS of equation (x) is always negative for p ∈ (0, 1), we can infer that the proportion of type 1 individuals
is expected to decrease to zero from any initial frequency. Note that unlike for neutral drift, it is always type 2 that is
expected to fix. This result is a manifestation of noise-induced selection—all else being equal, a faster pace of life
comes with a greater variance in the change of population density within a given time interval, since there are sim-
ply more stochastic birth/death events taking place, and types with a slower pace of life (type 2) are thus favored
(Parsons and Quince 2007; Parsons et al. 2010; Wodarz et al. 2017).

To illustrate the indirect mechanism of noise-induced biasing, we need to assume a functional form for the
turnover rates ti. In section S10 of the supplemental PDF, we obtain an exact expression for the speed density
when t1 p bp1 c and t2 p bp1 c2 2ϵ for suitable constants b and c. The parameter c can be viewed as an in-
trinsic turnover rate, and b can be viewed as a frequency-dependent component that may be either positive or
negative. Box figure 2 plots the speed density for various parameter values, illustrating both the direct (box
fig. 2A) and the indirect (box fig. 2B) mechanisms of noise-induced biasing. Note that the direct and indirect
mechanisms may operate either in isolation or simultaneously and may either supplement (red curve in box
fig. 2A and green curve in box fig. 2B) or oppose (red curves in box fig. 2) each other.

Noise-induced biasing in the presence of natural selection. Assume now that ϵb 1 ϵd 1 0. In this case, s 1 0, and
thus natural selection favors type 1 individuals. As before, there are two ways in which demographic stochasticity
can bias evolutionary dynamics toward certain types. Noise-induced selection could drive the expected trajectory
toward fixation of type 2 despite type 1 being favored by natural selection. In section S10 of the supplemental PDF,
we show that this can happen if and only if

(KNK 2 1)s(p,NK) p (KNK 2 1)(ϵb 2 ϵd) ! 2ϵd: ðxiÞ
Thus, noise-induced selection can reverse the predictions of natural selection when s(p,NK)(KNK 2 1) is sufficiently
small—that is, when natural selection is weak (s(p,NK) is small), populations are small (KNK is small), or both. Since
the strength and direction of the indirect mechanism depend on the functional form of ti, we do not explicitly study
it here. However, we provide some preliminary observations in section S10 of the supplemental PDF.
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populations may still spend much more time in states
where a certain type is overrepresented, in particular
possibly reversing the prediction of infinite population
models, if dV=dp is nonzero. For example, the system may
spend much more time in configurations where type 1
individuals are overrepresented even if s1 k=KNK ! 0
(meaning that the first term on the RHS of eq. [9] favors
type 2 individuals) as long as dV=dp is sufficiently nega-
tive (McLeod and Day 2019a). Thus, one type is “fa-
vored” through this effect in the sense that we are more
likely to observe the population in states where the focal
type is overrepresented, an effect that has been ascribed
to evolutionary noise (McLeod and Day 2019a, 2019b).
As an aside, note that (1=V)(dV=dp) could also equiva-
lently be written as the derivative of log(V ) with respect
to p and thus represents the strength and direction of the
frequency dependence of log(V). Since V[dp] p p(12
p)V(p) from equation (9), log(V) can be interpreted as be-
ing proportional to the logarithm of the variance in the
changes in the trait frequency dp. This term thus captures
the contributions of stochastic fluctuations (or noise) in
the trait frequency changes dp and can be interpreted as
selecting for reduced variance in the change in trait fre-
quencies dp, whereas noise-induced selection is a selection
for reduced variance in the change in population densities
(box 3). Both of these effects can bias the distribution of
types observed in finite populations, and we therefore col-
lectively refer to the two effects as “noise-induced bias-
ing.” Since noise-induced selection is directly visible as a
deviation in the expected change in frequency E[dp], we
call it the “direct” mechanism. Since the term looks math-
ematically similar to the action of natural selection (com-
pare the first and second terms on the RHS of eq. [5] or
[9]), we also use the phrase “noise-induced selection” for
the direct mechanism (following Week et al. 2021). In
contrast, noise-induced biasing via frequency dependence
of V is a more subtle mechanism that affects the distribu-
tion of types indirectly by biasing the time spent in differ-
ent states, and we thus refer to this effect as the “indirect”
mechanism of noise-induced biasing (box 4).

Remarkably, when natural selection does not operate
(s p 0), there are situations where the speed density,
and thus the stationary distribution when it exists, does
not depend on the total population size. In particular, if
t1 and k are such that the ratio t1=k is independent of
the total population size KNK, then so is the speed density.
Intuitively, this is because both noise-induced biasing and
drift arise from the stochasticity associated with finite
populations. More precisely, when s p 0, the total popu-
lation size KNK affects the dynamics only through a prefactor
Box 5 (Continued )
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Box Figure 2: Two distinct noise-induced effects that bias trait distributions. A, If the magnitude of the noise-induced selection coeffi-
cient k p 22ϵ is large relative to the intrinsic turnover rate c, the direct mechanism of noise-induced biasing operates. Parameters are
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of 1=KNK that occurs in both E(p) and V(p). It therefore
disappears in the ratio E=V . Thus, unlike the classic results
regarding natural selection-drift balance, the total popu-
lation size does not affect the relative strengths of noise-
induced biasing and genetic drift—instead, it is the details
of the demographic processes, as captured by k and V, that
determine which effect dominates. A similar observation
has been made in life history theory (Shpak 2005).
Price Equation for Finite Fluctuating Populations

Having described how the frequencies of types change
over time, we now examine the behavior of the statistical
population mean �f of any type-level quantity f (e.g., phe-
notype, fitness). Classically, the evolution of the statistical
mean of a trait in a population is described by the Price
equation and related formalisms, such as the breeder’s
equation (Page and Nowak 2002; Queller 2017; Lehtonen
2018; Lion 2018). Our formalism naturally allows us to
extend these results to a stochastic, dynamic setting to de-
scribe how mean values change over time in finite fluctu-
ating populations. We find that �f satisfies the SDE (see
sec. S3 of the supplemental PDF)

d�f p Cov(w, f )dt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
classical
selection

2
1

KNK(t)
Cov(t, f )dt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

noise‐induced selection
ðdirect mechanismÞ

1
∂f
∂t

� �
dt|fflfflfflfflffl{zfflfflfflfflffl}

effects of changes
in trait values f i

over time

1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KNK(t)
p dW �f|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

stochastic
fluctuations

,
ð12Þ

where

dW �f ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov t, f 2 �f

� 	2

 �

1 �tj2
f

r� �
dWt ð13Þ

is a stochastic integral term describing undirected stochas-
tic fluctuations (see eq. [S67] in sec. S5 of the supplemental
PDF). Here, we use Wt to denote a generic Wiener process
whose relation to the Wiener processes in equation (5) can
be studied using a relation discussed in section S5 of the
supplemental PDF. Equation (12) has previously been
derived in the epidemiology literature (Day et al. 2020,
eq. [5.2]; see sec. S8 in the supplemental PDF), and a quan-
titative trait version of the equation has also been derived
using more sophisticated mathematical techniques (Week
et al. 2021, eq. [21b]; Bhat 2024, eq. [25]).

Equation (12) recovers the Price equation (eq. [11] in
Lion 2018) in the infinite population (K → ∞) limit (see
sec. S7 of the supplemental PDF). Each term in equation (12)
lends itself to a simple biological interpretation. The first
term, Cov(w, f ), is well understood in the classical Price
equation and represents the effect of natural selection. If
the trait and the fitness are positively correlated, the mean
trait value in the population increases due to the effect of se-
lection. The second term, Cov(t, f )=KNK(t), is the effect of
noise-induced selection in finite fluctuating populations. Bi-
ologically, the Cov(t, f ) term (with negative sign) describes
a biasing effect due to differential turnover rates between dif-
ferent types; if the trait is positively correlated with turnover
rate, this term causes the mean trait value to decrease.

The third term of equation (12) is relevant whenever fi
can vary over time. Such variation over short (“ecologi-
cal”) timescales could potentially occur through a chang-
ing environment, phenotypic/behavioral plasticity, or any
manner of other ecological phenomena that change fi over
time. As we will see in the next section, this term is also
responsible for what Fisher called “environmental deteri-
oration” in Fisher’s fundamental theorem (Price 1972;
Frank and Slatkin 1992).

Finally, the last term of equation (12) describes the role
of stochastic fluctuations. Recall that the square of this
term corresponds to the infinitesimal variance of the change
in the mean value d�f of the quantity f in the population.
The expression ( f i 2 �f )2 is a measure of the distance of
fi from the population mean �f . The Cov(t, ( f 2 �f )

2
) term

thus tells us that if turnover ti of the ith type covaries pos-
itively with the distance of fi from the population mean
(i.e., individuals with more extreme f have higher turnover
rates), the population experiences a greater variance in d�f
(i.e., the change in the mean value of f ) over infinitesimal
time intervals. The �tj2 term tells us that even if t and f do
not covary, there is still some variance in d�f , given now by
the product of the mean turnover rate �t with the standing
variation j2

f in the quantity f. As we shall see in the next
section, this is a manifestation of neutral genetic/ecolog-
ical drift. Just as in the replicator equation, stochastic
fluctuations through dW�f can profoundly affect the time
spent at different values of �f (and the stationary distribu-
tion, when it exists) via the indirect mechanism of noise-
induced biasing if the term inside the square root of equa-
tion (13) depends on �f . Note that unlike for the replicator
equation, the SDE in equation (12) is one-dimensional re-
gardless of the number of traits (m), and thus the station-
ary distribution of the mean value �f can always be studied
the way we studied equation (9).
Fisher’s Fundamental Theorem for
Finite Fluctuating Populations

Two particularly interesting implications of equation (12)
are realized upon considering the time evolution of mean
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fitness and mean turnover rate. First, upon substituting
f p w in equation (12) and taking expectations over the
underlying probability space, we obtain

E
d�w
dt

� �
p E j2

w½ � |fflffl{zfflffl}
Fisher’s

fundamental
theorem

 2  E
j2
b(ind) 2 j2

d(ind)

KNK(t)

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

noise‐induced
selection

1 E
∂w
∂t

� �
|fflfflffl{zfflfflffl}

eco‐evolutionary
feedbacks to fitness

:

ð14Þ

The first term, j2
w, is the subject of Fisher’s fundamental

theorem (Frank and Slatkin 1992; Kokko 2021) and says
that in infinite populations, the rate of change of mean fit-
ness in the population is proportional only to the standing
variation in fitness j2

w if fitness at the type level (wi) does
not change over time. The second term of equation (14)
is a manifestation of noise-induced selection acting and
is particular to finite populations (note that the indirect
mechanism does not operate because we are only looking
at expectation values). Finally, the last term arises when-
ever wi can vary over time and represents the effect that
Fisher called the “deterioration of the environment” (Price
1972; Frank and Slatkin 1992). In short, this last term cap-
tures feedback effects on the fitness wi of the ith species
over short (ecological) timescales (Mylius and Diekmann
1995; Kokko 2021), and we refer the interested reader to
Kokko (2021) for a more detailed treatment. Equation (14)
recovers the standard version of Fisher’s fundamental theo-
rem in the infinite population (K → ∞) limit (see sec. S7 of
the supplemental PDF).

The Demographic Origins of Fitness Differences Induce
Quantitative Corrections to Fisher’s Fundamental Theo-
rem in Finite Populations. Since w p b(ind) 2 d(ind) by defi-
nition, equation (14) can alternatively be written as

E
d�w
dt

� �
p E 1 2

1
KNK

� �
j2
b(ind)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

changes in mean fitness
due to variation

in birth rates

 1 E 1 1
1

KNK

� �
j2
d(ind)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

changes in mean fitness
due to variation

in death rates

1 E
∂w
∂t

� �
|fflfflffl{zfflfflffl}

eco‐evolutionary
feedbacks to fitness

:

ð15Þ
Equation (15) redescribes variation in fitness in terms
of the more fundamental processes of birth and death.
Equation (15) also tells us that variation in death rates
leads to a slightly greater rate of increase in mean fitness
than an equivalent variation in birth rates. For example,
if individuals differ in birth rates alone (i.e., j2

d(ind) p 0,
j2
w p j2

b(ind) ), equation (15) predicts that the rate of mean
fitness in the absence of eco-evolutionary effects is given
by E[(1 2 1=KNK)j2

w]. On the other hand, if individuals
instead differ in death rates alone (i.e., j2

b(ind) p 0, j2
w p

j2
d(ind) ), the rate of change of mean fitness in the absence of

eco-evolutionary effects is given by E[(1 1 1=KNK)j2
w],

which is a slightly faster rate of change. Note, however,
that these are only minor quantitative corrections to Fish-
er’s fundamental theorem, and the two cases exhibit the
same qualitative behavior.

An Analog of Fisher’s Fundamental Theorem for the
Mean Turnover Rate of the Population

Carrying out the same steps in deriving equation (14)
with f p t in equation (12) yields a dynamical equation
for the evolution of mean turnover rates (Kuosmanen
et al. 2022) and reads

E
d�t
dt

� �
p E j2

b(ind) 2 j2
d(ind)

h i
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

natural selection
effects

 2 E
j2
t

KNK(t)

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
noise‐induced

selection effects

1 E
�∂t

∂t

� �
|fflffl{zfflffl}

eco‐evolutionary
feedbacks to ti

:

ð16Þ

The first term captures the effect of natural selection
on mean turnover rates and says that natural selection
may either increase or decrease the mean turnover rate
depending on the demographic details of the population.
More precisely, we predict that natural selection is ex-
pected to increase the mean turnover rate in the popula-
tion if (and only if) the expected variance in the birth
rates is greater than the expected variance in the death
rates (see also Kuosmanen et al. 2022). The second term
of equation (16) represents the effect of noise-induced se-
lection and is exactly analogous to the j2

w term in Fisher’s
fundamental theorem. This term says that noise-induced
selection always reduces mean turnover in the population,
with the rate of reduction of the mean turnover rate being
proportional to the standing variation in turnover rates j2

t .
Finally, the last term on the RHS of equation (16) quan-
tifies the effect of eco-evolutionary feedback via changes
in the turnover of each type over time. In infinitely large
populations (K → ∞), the second term on the RHS of
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equation (16) disappears; thus, the mean turnover rate �t
may either decrease or increase in infinitely large popu-
lations based on demographic details of (the variance
of) birth and death rates in the population (Kuosmanen
et al. 2022). In contrast, the noise-induced selection (sec-
ond term) always reduces the mean turnover rate.

The Fundamental Equation for the Population Variance
via a Generalization of an Equation for Variance

of Type-Level Quantities

Equation (12) is a general equation for the mean value of an
arbitrary type-level quantity f in the population. In many
real-life situations, we are interested in not just the popula-
tion mean but also the variance of a quantity in the popu-
lation. In section S4 of the supplemental PDF, we show that
the statistical variance of any type-level quantity f obeys

dj2
f p Cov w, ( f 2 �f )

2

 �

dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
classical selection

2
2

KNK

Cov t, ( f 2 �f )
2


 �
dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

noise‐induced selection

2
1

KNK

�tj2
f dt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

genetic=ecological
drift

1 2Cov
∂f
∂t

, f

� �
dt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

effects of changes
in trait values f i

over time

1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KNK(t)
p dWj2

f|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl} ,

stochastic
fluctuations

ð17Þ
where

dWj2
f
≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov t, f 2 �f

� 	4

 �

1 �t(j2
f )

2

r
dWt ð18Þ

is a stochastic integral term measuring the (nondirectional)
effect of stochastic fluctuations that vanishes upon taking
an expectation over the probability space (see eq. [S69] in
sec. S5 of the supplemental PDF). As before, we use Wt to
denote a generic Wiener process—the Wt that appears in
equation (17) is not necessarily the same process that ap-
pears in either equation (5) or equation (12). The stochas-
tic dependencies between the various Wiener processes can
be studied using a relation discussed in section S5 of the sup-
plemental PDF. An infinite population (K →∞) version
of equation (17) appears in Lion (2018; see sec. S7 of the sup-
plemental PDF) as a dynamic version of earlier, dynam-
ically insufficient equations for the change in trait variation
over a single generation (e.g., see eq. [6.14] in Rice 2004).

Once again, the terms of equation (17) lend themselves
to straightforward biological interpretation. The quantity
( f i 2 �f )
2

is a measure of the distance of fi from the popu-
lation mean value �f , and thus covariance with ( f 2 �f )

2

quantifies the type of selection operating in the system: a
negative correlation is indicative of stabilizing or direc-
tional selection, and a positive correlation is indicative of
disruptive (i.e., diversifying) selection (Rice 2004, chap. 6;
Lion 2018). An extreme case of diversifying selection for
fitness occurs if the mean fitness of the population is at a lo-
cal minimum but f i ≢ �f (i.e., the population still exhibits
some variation in f ). In this case, if the variation in f is
associated with a variation in fitness, then Cov(w, ( f 2 �f )

2
)

is strongly positive and the population experiences a sud-
den explosion in variance, causing the emergence of poly-
morphism in the population. If Cov(w, ( f 2 �f )

2
) is still

positive after the initial emergence of multiple morphs,
evolution eventually leads to the emergence of stable co-
existing polymorphisms in the population—this phenom-
enon is a slight generalization of the idea of evolutionary
branching that occurs in frameworks such as adaptive dy-
namics (Doebeli 2011). The Cov(∂f =∂t, f ) term represents
the effect of changes in f at the type level over time (due to
plasticity, for instance).

Finally, the last term on the RHS of equation (17) de-
scribes the role of stochastic fluctuations. The square of
this term is the infinitesimal (probabilistic) variance of
the changes in statistical variance dj2

f of f. Just like in
the stochastic replicator and Price equations, this term
can affect the time spent at different values of trait vari-
ance through the indirect mechanism of noise-induced
biasing. Just like the stochastic Price equation, the SDE
in equation (17) is always one-dimensional, and thus
the stationary distribution of the variance j2

f can also al-
ways be studied the way we studied equation (9).

In the case of one-dimensional quantitative traits, an
infinite-dimensional version of equation (17) has recently
been rigorously derived (Week et al. 2021) using measure-
theoretic tools under certain additional assumptions (Week
et al. 2021, eq. [21c]; see sec. S9 of the supplemental PDF).
Taking expectations over the probability space in equa-
tion (17) also recovers an equation previously derived
and used (Débarre and Otto 2016) in the context of evo-
lutionary branching in finite populations as a special case
(eq. [A.23] in Débarre and Otto [2016] is equivalent to
our eq. [17] for their choice of functional forms upon
converting their change in variance to an infinitesimal
rate of change, i.e., derivative).

Loss of Trait Variation in Populations Experiencing Drift.
The �tj2

f term quantifies the loss of variation due to sto-
chastic extinctions (i.e., demographic stochasticity) and
thus represents the classic effect of neutral drift in finite
populations. Our equations are agnostic to whether each
type i is an allele, a phenotype, a morph, or a species, so
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the drift in question may be either genetic or ecological
drift, depending on the biological context. To see why
�tj2

f quantifies the loss of trait variation, it is instructive
to consider the case in which this is the only force at play.
Let us imagine a population of asexual organisms in which
each fi is simply a label or mark arbitrarily assigned to in-
dividuals in the population at the start of an experiment/
observational study and subsequently passed on to off-
spring—for example, a neutral genetic tag in a part of the
genome that experiences a negligible mutation rate. Since
the labels are arbitrary and have no effect whatsoever on
the biology of the organisms, each label has the same fit-
ness wi ≡ w and per capita turnover ti ≡ t, and thus
�w p w and �t p t. Note that since every type has the
same fitness and turnover rate, we have Cov(w, ( f 2 �f )

2
) ≡

Cov(t, ( f 2 �f )
2
) ≡ 0. Since the labels do not change over

time, we also have Cov(∂f =∂t, f ) p 0. From equation (17),
we see that in this case the variance changes as

dj2
f p 2

tj2
f

KNK(t)
dt 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KNK(t)

p dWj2
f
: ð19Þ

Taking expectations, the second term on the RHS vanishes,
and we see that the expected variance in the population
obeys

dE[j2
f ]

dt
p 2 E

t

KNK

� �� �
E[j2

f ], ð20Þ

where we have decomposed the expectation of the prod-
uct on the RHS into a product of expectations, which is
admissible since the label f is completely arbitrary and
thus independent of both �t and NK(t). Equation (20) is a
simple linear ODE and has the solution

E[j2
f ](t) p j2

f (0)e2E t=KNK½ �t: ð21Þ
This equation tells us that the expected diversity (vari-
ance) of labels in the population decreases exponentially
over time. The rate of loss of diversity is E[t(KNK)21],
and thus populations with a higher turnover rate t and/
or a lower population size KNK lose diversity faster. This
is because populations with higher t experience more sto-
chastic events per unit time and are thus more prone to
stochastic extinction, while extinction is “easier” in smaller
populations because a smaller number of deaths is suffi-
cient to eliminate a label from the population completely.
Note that which labels/individuals are lost is entirely ran-
dom (since all labels are arbitrary), but nevertheless labels
tend to be stochastically lost until only a single label re-
mains in the population. Upon rescaling time as t → tt,
equation (21) recovers the continuous-time version of the
loss of heterozygosity formula for finite populations from
population genetics (Ewens 2004, eq. [1.5]; Crow and Ki-
mura 1970, secs. 7.3 and 8.4).
Discussion

The central result of our article is a set of stochastic dy-
namical equations for changes in trait frequencies in
the population, equation (5), that generalizes the repli-
cator equation (or, with mutations, the replicator-mutator
equation—eq. [S29]) to finite populations of nonconstant
size evolving in continuous time. From this, we derive a
generalization of the Price equation (eq. [12]) and Fisher’s
fundamental theorem (eq. [14]) as well as an equation for
changes in population variance of a type-level quantity
(eq. [17]). Our equations reveal that demographic sto-
chasticity alone can cause certain types to be more likely
to be observed in a population, an effect we term “noise-
induced biasing.” Noise-induced biasing can operate
through two distinct mechanisms (box 4), one that directly
affects the selection term in the replicator equation and
another that acts indirectly by affecting the time spent at
various states. Several theorists have called for a reformu-
lation of eco-evolutionary dynamics starting from sto-
chastic birth-death processes on the grounds that such a
formulation is more fundamental and mechanistic (Met-
calf and Pavard 2007; Lambert 2010; Doebeli et al. 2017).
Our equations provide a starting point for such a reformu-
lation by deriving some fundamental equations for the eco-
evolutionary dynamics of finite, stochastically fluctuating
populations.
Finite Population Effects on Eco-Evolutionary Dynamics

Our equations show that noise-induced effects can bias
evolutionary outcomes through two major, qualitatively
different mechanisms (box 4). The direct mechanism ap-
pears in the infinitesimal mean of our SDEs via a noise-
induced term that is inversely proportional to the pop-
ulation size (the second term on the RHS of eqq. [5],
[12], and [17]). The direct mechanism has previously
been reported in various contexts (Parsons and Quince
2007; Parsons et al. 2010; Wodarz et al. 2017; Parsons
et al. 2018; Kuosmanen et al. 2022). Since the terms cap-
turing these effects in equations (5), (12), and (17) have
the same mathematical form as the effect of classic natural
selection, the direct mechanism has previously been re-
ferred to as noise-induced selection (Week et al. 2021).
It has also been the object of study in early models of
bet hedging in finite populations (Gillespie 1974; Gil-
lespie 1977; Shpak 2005), thus explaining why noise-
induced selection has previously been associated with the
Gillespie effect for reduced variance (Parsons and Quince
2007; Parsons et al. 2010, 2018). However, note that the
variance that is studied in bet-hedging models is typically
variance in offspring numbers (Gillespie 1977). The vari-
ance in equation (4b) is not variance in offspring numbers
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but instead variance in the (infinitesimal) ecological growth
rate dxi, a quantity that has sometimes been called “demo-
graphic variance” (Engen et al. 1998; Shpak 2007). Further-
more, unlike many classic bet-hedging articles, such as
Gillespie (1974), in our framework both wi and ti (and thus
the mean and variance of the change in population density)
are defined from first principles in terms of birth and death
rates (eqq. [1], [2]).

In contrast, the indirect mechanism acts through the
infinitesimal variance of our SDEs and thus does not ap-
pear in the expected change in trait frequency. This mech-
anism is a subtle effect of frequency-dependent demo-
graphic stochasticity and can be present even when the
direct mechanism (i.e., noise-induced selection) is weak
or absent (boxfig. 2B). Mathematically, the indirect mech-
anism is revealed as a systematic bias in the speed den-
sity that causes the system to spend disproportionately
more time in certain states (McLeod and Day 2019a,
2019b; see box 4). If a stationary distribution exists, the
indirect mechanism will be visible in the stationary dis-
tribution but not in the expected trajectory. The indirect
mechanism can be thought of as analogous to frequency-
dependent viscosity; populations tend to accumulate in
those configurations that lead to slower changes in popu-
lation composition, and we are thus more likely to observe
the population in those configurations that make the rate
of change of the population slower. This observation has
previously been referred to as the effect of evolutionary
noise on evolutionary dynamics (McLeod and Day 2019a,
2019b).

Our results suggest an intriguing requirement for neu-
tral evolution in finite populations. In models of genetic
drift, evolution is said to be neutral if the fixation proba-
bility of a type in a population is proportional to the initial
frequency alone (Ewens 2004). For populations of non-
constant size, we see that neutrality in this sense is not en-
sured if the trait in question is neutral with respect to fit-
ness w alone. Instead, neutral evolution also requires all
trait variants to have equal turnover rates, failing which
evolution will be quasi neutral and favor those types as-
sociated with lower turnover rates (Parsons and Quince
2007; Parsons et al. 2010; Kuosmanen et al. 2022). In other
words, even in (finite) populations with no differential fit-
ness among traits, there exists a directional evolutionary
force that may systematically bias the course of evolution.
Furthermore, the indirect mechanism of noise-induced
biasing means that we may be more likely to observe the
population in states in which certain types are overrepre-
sented due to a biasing of the speed density and, when it
exists, the stationary distribution (McLeod and Day 2019a,
2019b). Thus, even if all individuals in the population have
equal fitness and equal turnover, types associated with
lower V(p) are still favored in the sense that we are more
likely to observe the population in a configuration at which
these types are overrepresented (McLeod and Day 2019a,
2019b) relative to neutral expectations, as defined above.
However, it may be noted that the strength of noise-
induced biasing is likely to be small or even negligible un-
less the population size is sufficiently small and/or all types
in the population have close to equal fitness (i.e., natural
selection is weak).

In our model, noise-induced selection is particular to
fluctuating populations and does not occur in models with
fixed population sizes, such as the Wright-Fisher or Moran
models (box 3). Taken alongside other theoretical (Lam-
bert 2010; Parsons et al. 2010; Abu Awad and Coron
2018; Kuosmanen et al. 2022; Mazzolini and Grilli 2023)
and empirical (Papkou et al. 2016; Chavhan et al. 2019)
studies of evolution in fluctuating populations, this last
point suggests that models that assume fixed total popula-
tion size, such as Wright-Fisher and Moran, may miss out
on important evolutionary phenomena that are seen only
in finite populations of nonconstant size. We explain how
our framework incorporates the drift-induced selection
from sex chromosome evolution (Veller et al. 2017; Saun-
ders et al. 2018) as well as some previous studies from so-
cial evolution (McLeod and Day 2019a) and epidemiology
(Parsons et al. 2018; Day et al. 2020) in section S8 of the
supplemental PDF. We also explain connections with some
other general frameworks of eco-evolutionary dynamics
(Rice 2020; Week et al. 2021; Kuosmanen et al. 2022) in
section S9 of the supplemental PDF.
Concluding Remarks

A growing body of literature has begun to highlight the
surprising and counterintuitive effects of demographic sto-
chasticity in shaping evolutionary outcomes in many eco-
logical scenarios. In this article, we derive from first prin-
ciples stochastic dynamical equations for eco-evolutionary
dynamics that generalize some standard equations of pop-
ulation biology, thus providing a conceptual synthesis of
the findings of these previous studies. The terms of the
equations we derive lend themselves to simple biological
interpretations and recover standard equations of evolu-
tionary theory in the infinite population limit. To the best
of our knowledge, the equations we derive in this article
are the first to showcase how demographic stochasticity
generically alters some standard equations of population
biology. The utility of the equations we derive thus lies not
(necessarily) in their solutions for specific models but in-
stead in their generality and the fact that their terms help
us clearly think about the various evolutionary phenom-
ena operating in biological populations (Queller 2017; Leh-
tonen 2018; Lion 2018; Luque and Baravalle 2021). The di-
rect and indirect mechanisms of noise-induced biasing



Evolution in Finite Populations 17
have distinct origins, may operate either independently
or together, and may push evolution in different direc-
tions (see the example in box 5). It is therefore essential
that studies explicitly differentiate between these two mech-
anisms to identify which noise-induced effects are germane
to any particular biological population (box 4). By rederiv-
ing some standard equations of population dynamics for
finite populations, we provide a framework with which to
approach particular finite population systems and system-
atically determine which evolutionary forces are important
from demographic first principles.

Although we neglect environmental stochasticity in
our current work, populations that experience both envi-
ronmental and demographic stochasticity often exhibit
surprising and counterintuitive eco-evolutionary dynam-
ics (Gokhale and Hauert 2016; Chavhan et al. 2021).
Studying the interplay of noise-induced biasing with en-
vironmental stochasticity may thus present a promising
avenue for future work. Since both the strength (Ham-
ilton 1966; Mallet et al. 2011; Lehtonen 2020b) and the
direction (Chapman et al. 2003; Maklakov and Chapman
2019) of natural selection may vary in populations struc-
tured by classes such as age or sex, extending our model to
include population structure could also be fruitful. On the
empirical side, developing methods to disentangle different
demographic stochastic effects from empirical datasets could
be another interesting avenue for future work.
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S1 The master equation and the system size expansion

Given a system with m different types of individuals and birth and death rate functions bi(n) and

di(n), we are interested in finding an equation for the rate of change of the conditional probability

P(n, t|n0, 0), the probability of finding the population in a state n at time t. Henceforth, we omit

the conditioning for notational brevity and simply write P(n, t) for this quantity. We assume that

the birth and death rates are of the order of the total population size, i.e. that bi(n) and di(n) are

O(∑i ni) functions.

For each i ∈ {1, . . . , m}, let us now define two step operators E±
i by their action on any function

f ([n1, . . . , nm], t) as:

E±
i f ([n1, . . . , ni, . . . , nm], t) = f ([n1, . . . , ni ± 1, . . . nm], t) (S1)

In other words, E±
i just changes the population through the addition or removal of one type i

individual. We can now write down an exact equation for the rate of change of P(n, t) by noting

that the only direct transitions allowed are those from populations that are exactly one individual

away from our focal population. Thus, we have the relation

∂P
∂t

(n, t) =
m

∑
j=1

[
(E−

j − 1)bj(n)P(n, t) + (E+
j − 1)dj(n)P(n, t)

]
(S2)

This equation is called the ‘master equation’, and completely characterizes our m-dimensional

process.

S1.1 Scaling assumptions, functional forms of birth and death rates

As mentioned in the main text, we assume that there is a carrying capacity/population size measure

K > 0 such that the total population size ∑i ni is expected to be O(K). This allows us to move

from population numbers n to population ‘densities’ x = n/K. Specifically, we assume that we can
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find O(1) functions b(K)i and d(K)i such that we can write

bi(n) = Kb(K)i (x)

di(n) = Kd(K)i (x)
(S3)

Note that this assumption means that b(K)i and d(K)i remain well-defined even in the K → ∞ limit,

since bi/K and di/K remain O(1) by our assumption on the scaling properties of n, bi, and di.

Thus, we may still speak of population densities x in the infinite population size limit (K → ∞).

Note that this scaling assumption implies that in the functional forms S4, we assume that b(ind)
i (x),

d(ind)
i (x), and Qi(x) are all O(1) functions.

In the supplementary, we assume birth and death rates have the slightly more general functional

form
b(K)i (x) = xib

(ind)
i (x) + λQi(x)

d(K)i (x) = xid
(ind)
i (x)

(S4)

where, as defined in the main text, b(ind)
i (x) and d(ind)

i (x) are non-negative functions that describe

the per-capita birth and death rate of type i individuals, respectively. When there are no type i

individuals in the population (xi = 0), individuals of type i may still be born through mutations of

other types or via immigration from other sources (gene flow). Thus, the birth rate of type i may

contain terms that do not depend multiplicatively on the density xi of type i individuals. The term

λQi(x) accounts for this possibility. The equations in the main text are recovered upon removing

this term by setting λ = 0.

The term λQi in Eq. S4 thus models an influx of type i individuals from sources other than

the existing pool of type i individuals. Here, λ ≥ 0 is a constant describing the rate of influx of

type i individuals from sources other than the existing pool of type i individuals, and Qi(x) is a

non-negative function that describes this additional contribution. For example, if type i individuals

can arise due to mutations of offspring of other types of individuals during birth, λ would represent

a mutation rate (typically denoted by µ) and Qi would model the functional form of mutation. A

4
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common choice, for example, is Qi(x) = ∑j ̸=i xj (i.e. the mutation j → i occurs at a total rate of

µxj). The influx term could also model immigration of type i individuals from other populations

since such immigration would depend not on the density of individuals xi in our focal population,

but on the density of individuals in the ‘source population’ from which individuals are emigrating

into our focal population. In this latter case, λ would represent a dispersal rate and Qi would

model the dispersal. Note that no analogous problem exists for the death rate, since the death

rate of type i individuals must be 0 when xi is 0 to ensure that we never have negative population

densities.

S1.2 The infinite population limit

We can now more clearly speak about what we mean by the infinite population limit. Recall that K

is a population size measure (Czuppon and Traulsen, 2021). Since the growth rate is expected to be

negative when ∑i ni > K, if a population is initiated with ∑i ni(0) being O(K), the total population

size ∑i ni(t) does not have unbounded growth, but instead remains O(K) before the population

eventually goes extinct. Thus, in terms of population densities x(t), the scaled population size

∑i xi(t) remains O(1). When we speak of the ‘infinite population limit’ K → ∞, we thus take

the limit of K → ∞ along with initial population size ∑i ni(0) → ∞ such that the initial total

scaled population size ∑i xi(0) remains O(1). Thus, the limit in question is the standard domain

of deterministic population models, namely, a model of a population with infinite population size

but finite population density. Note that in the infinite population limit, we cannot speak of n or

K individually but only of the ratio x = n/K, which is guaranteed to remain well-defined by our

scaling assumptions. A more thorough, rigorous treatment of the mathematical details behind the

rescaling procedure and infinite population limit is presented in Champagnat et al., 2006.

5
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S1.3 Step operators and system size expansion

To describe our stochastic process in terms of population densities rather than absolute population

sizes, we now define new step operators ∆±
i by their action on any real-valued function f (x, t) as

∆±
i f ([x1, . . . , xm], t) = f ([x1, . . . , xi ±

1
K

, . . . xm], t) (S5)

In terms of these new variables, (S2) becomes

∂P
∂t

(x, t) = K
m

∑
j=1

[
(∆−

j − 1)b(K)j (x)P(x, t) + (∆+
j − 1)d(K)j (x)P(x, t)

]
(S6)

If K is large, we can now Taylor expand the action of the step operators as

f ([x1, . . . , xi ±
1
K

, . . . xm], t) = f (x, t)± 1
K

∂ f
∂xi

(x, t) +
1

2K2
∂2 f
∂x2

i
(x, t) + · · ·

which, after substituting into (S6) and neglecting higher order terms, yields the equation

∂P
∂t

(x, t) =
m

∑
j=1

[
− ∂

∂xj
{A−

j (x)P(x, t)}+ 1
2K

∂2

∂x2
j
{A+

j (x)P(x, t)}
]

(S7)

where

A±
i (x) = b(K)i (x)± d(K)i (x)

Equation (S7) is an m-dimensional version of a ‘Fokker-Planck equation’ or ‘diffusion equation’ for

the probability density P(x, t). For a more detailed discussion on ‘system size approximations’ such

as the one we carried out above, we refer the reader to Chapter 11 of Ethier and Kurtz, 1986 for

the mathematically rigorous theory and Chapter 10 of Van Kampen, 1981 for a heuristic approach.

Pedagogical treatments focused on eco-evolutionary population dynamics can be found in Black

and McKane, 2012 and Czuppon and Traulsen, 2021.

6
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Itô SDE representation

For our purposes, we will often find it convenient to describe the same process as defined by the

Fokker-Planck equation (S7) via an ‘Itô stochastic differential equation’. It is well-known (Øksendal,

1998) that a stochastic process whose probability density function satisfies a Fokker-Planck equation

of the form (S7) is equivalent to an m-dimensional stochastic process obtained as the solution to

the Itô SDE

dXt = A−(Xt)dt +
1√
K

D(Xt)dWt (S8)

Here, A−(Xt) is an m-dimensional vector with ith element = A−
i (Xt). D(Xt) is an m × m matrix

with ijth element (D(Xt))ij = δij

(
A+

i A+
j

) 1
4 , where δij is the Kronecker delta symbol, defined by

δij =


1 i = j

0 i ̸= j

Finally, Wt is the m-dimensional Wiener process (standard Brownian motion) and can be thought

of as a vector of independent one-dimensional Wiener processes.

S2 Trait frequency dynamics using Itô’s formula

We first recall the version of the multi-dimensional Itô’s formula that will be relevant to us. Consider

an m-dimensional real Itô process Xt given by the solution to

dXt = µ(Xt)dt + σ(Xt)dWt

where µ : Rm → Rm is the ‘drift vector’ and σ : Rm → Rm×m is the ‘diffusion matrix’. Let

f : Rm → R be an arbitrary C2(Rm) function. Then, Itô’s formula (Øksendal, 1998, Section 4.2)

states that the stochastic process f (Xt) must satisfy:

7
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d f (Xt) =

[
(∇X f )T µ +

1
2

Tr[σT(HX f )σ]
]

dt + (∇X f )T σdWt (S9)

where Tr[·] denotes the trace of a matrix, (·)T denotes the transpose, and we have suppressed the

Xt dependence of µ and σ to reduce clutter. Here, ∇x f is the m-dimensional gradient vector of f

with respect to x and Hx f is the m × m Hessian matrix of f with respect to x, respectively defined

for f ([x1, . . . , xm]T) as:

(∇x f )j =
∂ f
∂xj

(Hx f )jk =
∂2 f

∂xj∂xk

In our case, we have the Itô process given by (S8), which defines how the density of each type of

individual changes over time. We thus have µ(Xt) = A−(Xt) and σ(Xt) = D(Xt)/
√

K. For each

fixed i ∈ {1, 2, . . . , m}, let us define a scalar function fi : Rm → R as

fi(x) =
xi

m
∑

j=1
xj

Thus, fi(Xt) gives us the frequency of type i individuals when the population is described by the

vector Xt. As an aside, note that we only need to calculate frequencies for i ∈ {1, 2, . . . , m − 1}

along with NK = ∑ xi. We can now use Itô’s formula (S9) to describe how fi changes over time.

The jth element of the gradient of fi is given by:

8
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(∇x fi)j =
∂

∂xj

 xi
m
∑

k=1
xk



=


 1

m
∑

r=1
xr

 ∂xi

∂xj
−

 xi(
m
∑

r=1
xr

)2

 m

∑
k=1

∂xk

∂xj

 (S10)

where we have defined the frequency of the ith type pi = fi(x). To proceed further, we require

the quantity ∂xj
∂xk

for any pair of types j, k ∈ {1, 2, 3, . . . , m − 1, m}. Since changes in densities

in our system are only being determined by ecological interactions at the individual level, with

changes in total population size being an emergent quantity, we can assume that our system obeys
∂xj
∂xk

= δjk ∀ j, k ∈ {1, 2, 3, . . . , m− 1, m}. Note that this is not true if the total population size is held

constant since changes in densities of one type must be accompanied by complementary changes in

densities of at least one other type to keep the total density ∑i xi strictly constant.

We can now substitute ∂xj
∂xk

= δjk into equation (S10). Upon doing this, we obtain

(∇x fi)j =
1

m
∑

r=1
xr

(
δij − pi

)
(S11)

Similarly, we can also calculate the Hessian. The jkth element of the Hessian is given by:

9



Supplement to Bhat and Guttal 2024, Evolution in finite populations, Am. Nat.

(Hx fi)jk =
∂2

∂xj∂xk

 xi
m
∑

l=1
xl



=
∂

∂xj

 δik
m
∑

r=1
xr

− xi(
m
∑

r=1
xr

)2


=

1(
m
∑

r=1
xr

)2

(
2pi − δij − δik

)
(S12)

Thus, for the first term of (S9), we have:

(∇X fi)
T A− =

m

∑
j=1

(
(∇x fi)j

)
A−

j

=
1

m
∑

r=1
xr

m

∑
j=1

(
δij − pi

)
A−

j

=
1

m
∑

r=1
xr

(
A−

i − pi

m

∑
j=1

A−
j

)
(S13)

This term describes the effects of selection and influx (mutation/migration) at the infinite pop-

ulation limit. However, the finiteness of the population adds a second directional term to these

dynamics, described by the second term that multiplies dt in (S9). To calculate it, we first calculate:

10
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1√
K
(Hx fiD)jk =

1√
K

m

∑
l=1

(Hx fi)jl (D)lk

=
1

√
K
(

m
∑

r=1
xr

)2

m

∑
l=1

(
2pi − δij − δil

)
δlk
(

A+
l A+

k

) 1
4 (S14)

=
1

√
K
(

m
∑

r=1
xr

)2

((
2pi − δij

)
(A+

k )
1
2 − δik

(
A+

i A+
k

) 1
4
)

(S15)

=
1

√
K
(

m
∑

r=1
xr

)2

(
2pi − δij − δik

)
(A+

k )
1
2 (S16)

and thus:

1
K

(
DTHx fiD

)
lk
=

1
K

m

∑
j=1

(
DT
)

l j
(Hx fiD)jk

=
1

K
(

m
∑

r=1
xr

)2

m

∑
j=1

δl j

(
A+

l A+
j

) 1
4
(A+

k )
1
2
(
2pi − δij − δik

)
(S17)

=
1

K
(

m
∑

r=1
xr

)2 (A+
k )

1
2

(
2pi(A+

l )
1
2 − (A+

i )
1
2 δil − (A+

l )
1
2 δik

)
(S18)

Using this, we see that the trace of this matrix is given by:

1
K

Tr[DTHx fiD] =
1
K

m

∑
k=1

(
DTHx fiD

)
kk

=
1

K
(

m
∑

r=1
xr

)2

m

∑
k=1

(
2pi(A+

k A+
k )

1
2 − (A+

i A+
k )

1
2 δik − (A+

k A+
k )

1
2 δik

)
(S19)

=
1

K
(

m
∑

r=1
xr

)2

(
2pi

(
m

∑
k=1

A+
k

)
− 2A+

i

)
(S20)

11
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and thus, the second term multiplying dt in (S9) is given by:

1
2K

Tr[DTHx fiD] =
−1

K
(

m
∑

r=1
xr

)2

(
A+

i − pi

(
m

∑
k=1

A+
k

))
(S21)

Finally, denoting dWt = [dW(1)
t , dW(2)

t , . . . , dW(m)
t ]T where each W(j)

t is an independent one dimen-

sional Wiener process, we have:

(DdWt)j =
m

∑
k=1

DjkdW(k)
t

=
m

∑
k=1

δjk

(
A+

j A+
k

) 1
4 dW(k)

t (S22)

=
(

A+
j

)1/2
dW(j)

t (S23)

Thus, using (S11), we see that the last term on the RHS of (S9) is given by:

1√
K
(∇X f )T DdWt =

1√
K

m

∑
j=1

(∇x fi)j (DdWt)j

=
1(

m
∑

r=1
xr

)√
K

m

∑
j=1

(
δij − pi

) (
A+

j

)1/2
dW(j)

t (S24)

=
1(

m
∑

r=1
xr

)√
K

(
A+

i

)1/2 dW(i)
t − pi

m

∑
j=1

(
A+

j

)1/2
dW(j)

t (S25)

Putting equations (S13), (S21) and (S25) into (S9) and letting NK(t) =
m
∑

r=1
xr we see that pi =

fi(X)t, the frequency of the ith type in the population Xt, changes according to the equation:

12
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dpi =
1

NK(t)

(
A−

i − pi

m

∑
j=1

A−
j

)
dt︸ ︷︷ ︸

K → ∞ prediction

− 1
K

1
N2

K(t)

(
A+

i − pi

(
m

∑
k=1

A+
k

))
dt︸ ︷︷ ︸

Directional finite size effects
due to differential turnover rates

+
1√

KNK(t)

[(
A+

i

)1/2 dW(i)
t − pi

m

∑
j=1

(
A+

j

)1/2
dW(j)

t

]
︸ ︷︷ ︸

Non-directional finite size effects
due to stochastic fluctuations

(S26)

Plugging the functional forms of (S4) and the definitions of wi and τi into the definitions of A−
i

and A+
i , we obtain the relations

A−
i = xiwi(x) + λQi(x)

A+
i = xiτi(x) + λQi(x)

(S27)

Thus, for the first term of (S26), we have

1
NK(t)

(
A−

i − pi

m

∑
j=1

A−
j

)
=

1
NK(t)

[wi(x)xi + λQi(x)]−
pi

NK(t)

m

∑
j=1

[
wj(x)xj + λQj(x)

]
= wi(x)pi +

λ

NK(t)
Qi(x)− pi

m

∑
j=1

[
wj(x)pj +

λ

NK(t)
Qj(x)

]

where we have used the definition of pi from (iii). Now using the definition of mean fitness from

(iv) and rearranging terms gives us

1
NK(t)

(
A−

i − pi

m

∑
j=1

A−
j

)
= (wi(x)− w)pi + λ

[
Qi(p)− pi

(
m

∑
j=1

Qj(p)

)]
(S28)

where we have defined Qj(p) = Qj(x)/NK(t). Repeating the exact same calculations for the A+
i

terms in the second term of (S26) now yields equation

13



Supplement to Bhat and Guttal 2024, Evolution in finite populations, Am. Nat.

dpi(t) = (wi(x)− w)pidt︸ ︷︷ ︸
Natural selection
(w > w preferred)

+
1

KNK(t)
(τi(x)− τ) pidt︸ ︷︷ ︸

Noise-induced selection
(τ < τ preferred)

+ λ

(
1 − 1

KNK(t)

)[
Qi(p)− pi

(
m

∑
j=1

Qj(p)

)]
dt︸ ︷︷ ︸

Effect of population influx terms
(not strongly affected by demographic stochasticity)

+
1√

KNK(t)

[√
A+

i (x)dW(i)
t − pi

m

∑
j=1

√
A+

j (x)dW(j)
t

]
︸ ︷︷ ︸

Non-directional noise-induced effects
due to stochastic fluctuations

(S29)

which is the first key result (5) presented in the main text upon setting λ = 0.

The third term on the RHS of Eq. S29 represents potential biasing effects due to the influx

of individuals of type i in a manner that does not depend purely multiplicatively on the current

population density xi of type i individuals (for example, through immigration from an external

population or mutation of other types during birth). Since 1 − 1/KNK is typically very close to 1

for medium to large population size (KNK), we see that such influxes of individuals are not strongly

affected by demographic stochasticity and thus have qualitatively similar effects in small, large,

and infinite populations. This observation justifies our decision to neglect such terms in the main

text for the sake of conceptual clarity, keeping the goals of a synthesis in mind.

S3 A stochastic analog of the Price equation for finite,

fluctuating populations

In this section, we will derive an SDE for the rate of change of the population mean value of any

type-level quantity in finite, fluctuating populations. Let f be any type-level quantity, with value

fi(t) for the ith type. Using the product rule of calculus on the definition (iv) of the statistical

mean tells us that we have the relation

14
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d f
dt

=
d
dt

(
m

∑
i=1

fi pi

)
=

m

∑
i=1

(
fi

∂pi

∂t
+ pi

∂ fi

∂t

)
=

m

∑
i=1

fi
∂pi

∂t
+

(
∂ f
∂t

)
(S30)

i.e.

d f =
m

∑
i=1

fidpi +

(
∂ f
∂t

)
dt (S31)

We will further simplify the first term on the RHS of (S31). We do this by using (S29), which gives

us a representation of dpi. Using the RHS of (S29), we can conclude that we must have

m

∑
i=1

fidpi =

(
m

∑
i=1

fiwi(x)pi − w
m

∑
i=1

fi pi + λ

[
m

∑
i=1

Qi(p) fi −
(

m

∑
j=1

Qj(p)
m

∑
i=1

pi fi

)])
dt

− 1
KNK

(
m

∑
i=1

fiτi(x)pi − τ
m

∑
i=1

fi pi + λ

[
m

∑
i=1

Qi(p) fi −
(

m

∑
j=1

Qj(p)
m

∑
i=1

pi fi

)])
dt

1√
KNK

([
m

∑
i=1

fi

√
A+

i (x)dW(i)
t −

m

∑
i=1

fi pi

m

∑
j=1

√
A+

j (x)dW(j)
t

]) (S32)

now using the definition of the statistical mean from (iv) in equation (S32), we obtain

m

∑
i=1

fidpi =

(
f w − f w + λ

[
m

∑
i=1

Qi(p) fi −
(

m

∑
j=1

Qj(p) f

)])
dt

− 1
KNK

(
f τ − f τ + λ

[
m

∑
i=1

Qi(p) fi −
(

m

∑
j=1

Qj(p) f

)])
dt

1√
KNK

([
m

∑
i=1

fi

√
A+

i (x)dW(i)
t −

m

∑
j=1

f
√

A+
j (x)dW(j)

t

]) (S33)

By the definition of the statistical covariance (v), we now obtain

15
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m

∑
i=1

fidpi = Cov(w, f )dt + λ

[
m

∑
i=1

Qi(p) fi − f

(
m

∑
j=1

Qj(p)

)]
dt

− 1
KNK

(
Cov(w, f )dt + λ

[
m

∑
i=1

Qi(p) fi − f

(
m

∑
j=1

Qj(p)

)]
dt

)
1√

KNK

(
m

∑
i=1

(
fi − f

)√
A+

i (x)dW(i)
t

) (S34)

Collecting all terms that capture effects related to mutations/migrations (i.e. all terms with a λ

factor) via defining the term

M f (p, NK) := λ

(
1 − 1

KNK(t)

)( m

∑
i=1

( fi − f )Qi(p)

)
(S35)

and collecting all stochastic integral terms via defining the term

dW f :=
m

∑
i=1

(
fi − f

)√
A+

i (x)dW(i)
t (S36)

and substituting into equation (S34) now yields

m

∑
i=1

fidpi = Cov(w, f )dt − 1
KNK(t)

Cov(τ, f )dt + M f (p, NK)dt +
1√

KNK(t)
dW f (S37)

This is the simplified version of the first term on the RHS of equation (S31). Upon substitution,

(S31) becomes

d f = Cov(w, f )dt − 1
KNK(t)

Cov(τ, f )dt + M f (p, NK)dt +
1√

KNK(t)
dW f +

(
∂ f
∂t

)
dt (S38)

which is precisely equation (12) in the main text once we set λ = 0 (i.e. M f = 0).
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S4 A Price-like equation for the variance of a type-level quantity

In this section, we will derive an SDE for the rate of change of the variance of any type-level

quantity in finite, fluctuating populations. From the definition (v), we see that the variance of any

type level quantity f is given by:

σ2
f := Cov( f , f ) = ( f 2)− ( f )2 (S39)

By the product rule, we have

dσ2
f

dt
= 2 f

∂ f
∂t

+
m

∑
i=1

f 2
i

dpi

dt
− d

dt
( f

2
) (S40)

i.e.

dσ2
f = 2

(
f

∂ f
∂t

)
+

m

∑
i=1

f 2
i dpi − d( f

2
) (S41)

We will evaluate the RHS term by term. The first term is as simplified as can be without more

information about f . For the second term, we can substitute dpi from (S29) and then use the exact

same steps we carried out in supplementary section S3 to derive equation (S38). Upon doing this,

we obtain

m

∑
i=1

f 2
i dpi = Cov(w, f 2)dt − 1

KNK
Cov(τ, f 2)dt

+ λ

(
1 − 1

KNK(t)

)( m

∑
i=1

f 2
i Qi(p)− f 2

m

∑
i=1

Qi(p)

)
dt

+
1√

KNK(t)

(
m

∑
i=1

(
f 2
i − f 2

)√
A+

i dW(i)
t

) (S42)

For the third term, we require Itô’s formula. Here, the relevant version of Itô’s formula is the

one-dimensional version of (S9). Given a one-dimensional process dXt = S(Xt)dt + ∑j Dj(Xt)dW(j)
t

with S, Dj being suitable real functions and each W(j)
t being an independent Wiener process, Itô’s

17
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formula says that given any C2(R) function g(x), we have the relation:

dg(Xt) =

(
S(Xt)g′(Xt) +

g′′(Xt)

2 ∑
j

D2
j (Xt)

)
dt + ∑

j
Dj(Xt)g′(Xt)dW(j)

t (S43)

In our case, we have a one-dimensional process for the mean value d f of the type level quantity,

and the C2(R) function g(x) = x2. Itô’s formula thus says that the third term of (S41) is given by:

d( f
2
) =

(
2 f S(Xt) + ∑

j
D2

j (Xt)

)
dt + ∑

j
2 f Dj(Xt)dW(j)

t (S44)

where the relevant functions S and Dj can be read off from (S38). Since the dW(j)
t terms are

unwieldy, we will denote the contribution of all the dW(j)
t terms collectively by dWσ2

f
to reduce

notational clutter and only explicitly calculate these terms at the end.

We can thus calculate

d( f
2
) = 2 f

[
Cov(w, f )dt − 1

KNK(t)
Cov(τ, f )dt + M f (p, NK) +

(
∂ f
∂t

)]
dt

+

(
1

KN2
K(t)

∑
i

(
fi − f

)√
A+

i (x)

)
dt + dWσ2

f
(S45)

We now observe that the covariance operator is a bilinear form, i.e. given any three quantities X,

Y and Z and any constant a ̸= 0, we have the relations:

Cov(aX, Y) = aCov(X, Y) = Cov(X, aY)

Cov(X, Y + Z) = Cov(X, Y) +Cov(X, Z)

Substituting equations (S42) and (S45) into equation (S41) and using this property of covariances

for the Cov(w, ·) and Cov(τ, ·) terms, we obtain:
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dσ2
f = Cov(w, f 2 − 2 f f )dt − 1

KNK

(
Cov(τ, f 2 − 2 f f )

)
dt + 2

(
f

∂ f
∂t

− f
(

∂ f
∂t

))
dt

+ λ

(
1 − 1

KNK(t)

)( m

∑
i=1

( f 2
i − 2 f fi)Qi(p)− ( f 2 − 2 f

2
)

m

∑
i=1

Qi(p)

)
dt

− 1
KN2

K(t)

(
m

∑
i=1

( fi − f )2A+
i

)
dt

+ dWσ2
f

(S46)

Now, we note that

1
NK

A+
i =

1
NK

(τixi + λQi(x)) (S47)

= τi pi + λQi(p) (S48)

and thus the third line of (S46) is

1
KN2

K(t)

(
m

∑
i=1

( fi − f )2A+
i

)
dt =

1
KNK

m

∑
i=1

( fi − f )2 (τi pi + λQi(p)) (S49)

=
1

KNK

m

∑
i=1

(
fi − f

)2
(τi pi + λQi(p)) (S50)

=
1

KNK

(
τ
(

f − f
)2

+ λ
m

∑
i=1

(
fi − f

)2
Qi(p)

)
(S51)

=
1

KNK

(
Cov(τ,

(
f − f

)2
) + τ

(
f − f

)2
+ λ

m

∑
i=1

(
fi − f

)2
Qi(p)

)
(S52)

=
1

KNK

(
Cov(τ,

(
f − f

)2
) + τσ2

f + λ
m

∑
i=1

(
fi − f

)2
Qi(p)

)
(S53)

where we have used the definition of statistical covariance in the second to last line and used the

definition of statistical variance in the last line. Substituting (S53) into (S46) and using Mσ2
f
(p, NK)
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to denote the contributions of all the mutational terms (i.e. all terms with a λ factor) for notational

brevity, we obtain

dσ2
f = Cov(w, f 2 − 2 f f )dt − 1

KNK

(
Cov(τ, f 2 − 2 f f ) +Cov(τ,

(
f − f

)2
) + τσ2

f

)
dt

+ 2Cov
(

∂ f
∂t

, f
)

dt + Mσ2
f
(p, NK)dt + dWσ2

f

(S54)

We can now complete the square inside the covariance terms of the first line of the RHS by writing

f 2 − 2 f f = ( f − f )2 − f
2 to obtain

dσ2
f =

[
Cov

(
w, ( f − f )2

)
−Cov

(
w,
(

f
)2
) ]

dt

− 1
KNK

[
Cov

(
τ, ( f − f )2

)
−Cov

(
τ,
(

f
)2
)
+Cov(τ,

(
f − f

)2
) + τσ2

f

]
dt

+ 2Cov
(

∂ f
∂t

, f
)

dt + Mσ2
f
(p, NK)dt + dWσ2

f

(S55)

To simplify the covariance terms of the first line of the RHS, we observe that

Cov
(

w,
(

f
)2
)
=

(
w
(

f
)2
)
− w

((
f
)2
)

=
(

f
)2 m

∑
i=1

wi pi − w
(

f
)2 m

∑
i=1

pi

=
(

f
)2

w − w
(

f
)2

= 0

and similarly,

Cov
(

τ,
(

f
)2
)
= 0

and thus, using this in (S55), we see that the rate of change of the variance of any type-level

quantity f in the population satisfies:
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dσ2
f = Cov

(
w, ( f − f )2

)
dt − 1

KNK

[
τσ2

f + 2Cov
(

τ, ( f − f )2
) ]

dt

+ 2Cov
(

∂ f
∂t

, f
)

dt + Mσ2
f
(p, NK)dt + dWσ2

f

(S56)

This is precisely equation (17) in the main text. To calculate the mutation term, we substitute

(S53) into (S46) to find

Mσ2
f
(p, NK) = λ

(
m

∑
i=1

(
f 2
i − 2 f fi − f 2 + 2 f

2
)

Qi(p)

)

− λ

KNK

m

∑
i=1

(
f 2
i − 2 f fi − f 2 + 2 f

2
+ ( fi − f )2

)
Qi(p)

(S57)

We can further simplify the first term of the RHS as

f 2
i − 2 f fi − f 2 + 2 f

2
= ( f 2

i + f
2 − 2 f fi)− ( f 2 − f

2
)

= ( fi − f )2 − σ2
f

and similarly, the second term as

f 2
i − 2 f fi − f 2 + 2 f

2
+ ( fi − f )2 = 2( fi − f )2 − σ2

f

thus, the contributions of influx terms to the change in the variance of f are given by

Mσ2
f
(p, NK) = λ

(
m

∑
i=1

(
( fi − f )2 − σ2

f

)
Qi(p)

)

− λ

KNK

m

∑
i=1

(
2( fi − f )2 − σ2

f

)
Qi(p)

(S58)

which after slight rearrangement becomes
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Mσ2
f
(p, NK) = λ

(
m

∑
i=1

[(
1 − 2

KNK

)
( fi − f )2Qi(p)

]
− σ2

f

(
1 − 1

KNK

) m

∑
i=1

Qi(p)

)
(S59)

Finally, for the stochastic integral term, we can use equations (S42) and (S44) to calculate:

dWσ2
f
=

1√
KNK(t)

(
m

∑
i=1

(
f 2
i − f 2 − 2 f ( fi − f )

)√
A+

i dW(i)
t

)
(S60)

=
1√

KNK(t)

(
m

∑
i=1

(
f 2
i − f 2 − 2 f fi − 2 f

2
)√

A+
i dW(i)

t

)
(S61)

=
1√

KNK(t)

(
m

∑
i=1

(
fi − f

)2√
A+

i dW(i)
t

)
(S62)

which is equation (18) in the main text upon setting λ = 0 (i.e. Mσ2 = 0).

S5 A more elegant representation of sums of stochastic integrals

against independent Wiener processes

We have arrived at three stochastic differential equations (equations (S29), (S38), and (S60)) that

describe the change in the frequency of a type, the population mean value of a type-level quantity,

and the population variance of a type-level quantity over time. All three of these equations contain

sums of stochastic integrals of several independent functions against independent Wiener processes.

In this section, we will present a more elegant representation of these terms as a single stochastic

integral.

Let us first recall that given m independent one-dimensional Wiener processes W(1)
t , W(2)

t , . . . , W(m)
t ,

m ‘nice’ real functions g1(x), g2(x), . . . , gm(x), and the stochastic process

dXt =
m

∑
i=1

gi(Xt)dW(i)
t
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We can always find a single one-dimensional Wiener process Wt such that

dXt =

(
m

∑
i=1

g2
i (Xt)

)1/2

dWt

This result is well-known but we were unable to find a reference that explicitly proved it, and

so we prove it as a lemma at the end of this supplementary section.

Using this result, we can now calculate the stochastic integral terms of our equations. For

equation (7), we can calculate

m

∑
i=1

(xiτi + λQi(x)) dW(i)
t =

[
m

∑
i=1

xiτi + λ
m

∑
i=1

Qi(x)

]1/2

dWNK
t (S63)

=

[
τNK(t) + λ

m

∑
i=1

Qi(x)

]1/2

dWNK
t (S64)

where WNK
t is a one-dimensional Wiener process. For equation (S29), the stochastic analog of the

replicator-mutator equation, we find that the noise term can be written as a stochastic integral

against a single Wiener process Wt as

1√
KNK(t)

[
pi(1 − pi)

2τi + p2
i

(
∑
j ̸=i

τj pj

)
+ λ

{
(1 − pi)

2Qi(p) + p2
i ∑

j ̸=i
Qj(p)

}]1/2

dWt (S65)

Note that the inclusion of influx terms (λ ̸= 0) in Eqs S65 means the stochastic fluctuations do

not vanish at the boundaries of [0, 1]m. Studying whether the resultant process is well-behaved (i.e.

guaranteed to remain confined in [0, 1]m for all times t > 0) is beyond the scope of this work.

For equation (S38), the stochastic analog of the Price equation, we have:

dW f =
m

∑
i=1

(
fi − f

)√
A+

i (x)dW(i)
t =

(
m

∑
i=1

(
fi − f

)2
A+

i (x)

)1/2

dWt (S66)

where Wt is now a single one-dimensional Wiener process. This is precisely the term calculated in
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equation (S53) (barring the 1/KN2
K pre-factor), and thus the stochastic term for the mean value is

given by:

dW f =

√√√√NK(t)

(
Cov(τ,

(
f − f

)2
) + τσ2

f + λ
m

∑
i=1

(
fi − f

)2
Qi(p)

)
dWt (S67)

Similarly, for the variance equation (S60), we can write

dWσ2
f
=

m

∑
i=1

(
fi − f

)2√
A+

i (x)dW(i)
t =

(
m

∑
i=1

(
fi − f

)4
A+

i (x)

)1/2

dWt (S68)

where Wt is now a single one-dimensional Wiener process. A calculation exactly analogous to that

done in obtaining (S53) reveals that this term can be written as

dWσ2
f
=

√√√√NK(t)

(
Cov(τ,

(
f − f

)4
) + τ(σ2

f )
2 + λ

m

∑
i=1

(
fi − f

)4
Qi(p)

)
dWt (S69)

which is the representation used in the main text (with λ = 0).

Proof of the representation of sums of stochastic integrals with respect to

independent Wiener processes

Here, we prove the mathematical result we used above. We stress once again that this is not a new

result — we provide the proof here because, while the proof is mathematically straightforward, we

were unable to find a suitable citation that explicitly writes down the proof.

Lemma. Let m ∈ N. Let W(1)
t , W(2)

t , . . . , W(m)
t be m independent one-dimensional Wiener pro-

cesses. Let g1(x), g2(x), . . . , gm(x) be m ‘nice’ (L2(R), Lipschitz, etc.) real functions. Let

dXt =
m

∑
i=1

gi(Xt)dW(i)
t

Then, we can always find a single one-dimensional Wiener process Wt (on the same probability
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space) such that

dXt =

(
m

∑
i=1

g2
i (Xt)

)1/2

dWt

Proof. It suffices to prove the m = 2 case.

Let dXt = g1(Xt)dW(1)
t + g2(Xt)dW(2)

t . Let us consider the two-dimensional process Wt = [W(1)
t , W(2)

t ]T

on R2. Define a new function G : R → R2 given by

G(x) =
1√

g2
1(x) + g2

2(x)


g1(x)

g2(x)


(S70)

Now, by definition, we have

t∫
0

G(Xs) · dWs =

t∫
0

g1(Xs)√
g2

1(Xs) + g2
2(Xs)

dW(1)
t +

t∫
0

g2(Xs)√
g2

1(Xs) + g2
2(Xs)

dW(2)
s (S71)

Using the Itô isometry (Karatzas and Shreve, 1998, Chapter 2, Proposition 2.10), we can calculate

the quadratic variation of
∫

G · dW as

〈 ∫
G(Xs) · dWs

〉
t
=

t∫
0

∥G(Xs)∥2 d⟨W⟩s

=

t∫
0

1
g2

1 + g2
2
· (g2

1 + g2
2)ds

=

t∫
0

ds = t (S72)

Since
∫

G · dW is a stochastic integral, the process (t, ω) →
∫ t

0 G(Xs(ω)) · dWs(ω) ∈ M c
2 and

is thus a continuous martingale. But, by Lévy’s characterization of Brownian motion (Karatzas

and Shreve, 1998, Chapter 3, Theorem 3.16), the only continuous martingale Mt that satisfies
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⟨M⟩t = t is the Wiener process. Thus, from equation (S72), we are led to conclude that there is a

one-dimensional Wiener process Wt on the same probability space such that we can write

G(Xt) · dWt = dWt (S73)

We can now use equation (S71) on the LHS of equation (S73) to write

g1(Xt)√
g2

1(Xt) + g2
2(Xt)

dW(1)
t +

g2(Xt)√
g2

1(Xt) + g2
2(Xt)

dW(2)
t = dWt (S74)

⇒ g1dW(1)
t + g2dW(2)

t =
√

g2
1(Xt) + g2

2(Xt)dWt (S75)

By definition of our original process Xt, we can now conclude that

dXt =
√

g2
1(Xt) + g2

2(Xt)dWt (S76)

thus completing the proof.

S6 The speed density of the stochastic replicator equation for

two species

To study the effects of demographic stochasticity on evolutionary dynamics more thoroughly, we

use this section to examine the time that the system defined by equation (8) spends at different

states. Following McLeod and Day, 2019, we will do this using the speed density. Given any

one-dimensional diffusion process dXt = µ(Xt)dt + σ(Xt)dWt defined over an interval [a, b] ⊆ R,

the speed density m(x) of the process (Karlin and Taylor, 1981; Etheridge, 2011) is defined as the

function

m(x) =
1

σ2(x)
exp

(
2

x∫
µ(y)
σ2(y)

dy

)
(S77)
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where the lower limit of the integral being left unspecified is meant to denote an indefinite integral

evaluated at the point x since the choice of the lower limit is arbitrary ( Karlin and Taylor, 1981,

Chapter 15, Equation 3.10). The speed density is important because it provides information about

the long-term behavior of the stochastic process Xt. In particular, if there exists a constant 0 <

N < ∞ such that
∫ b

a m(x)dx = 1/N , then the stochastic process obtained as the solution to

dXt = µ(Xt)dt + σ(Xt)dWt attains a unique stationary state X∞ as t → ∞, and this stationary

state has a probability distribution given by (Karlin and Taylor, 1981, Chapter 15, Equation 5.34

along with Chapter 15, Equation 3.10; also see Czuppon and Traulsen, 2021)

P ({x1 ≤ X∞ ≤ x2}) = N
x2∫

x1

m(x)dx + C (S78)

That is to say, the probability density of the stationary state will be given by Nm(x). Regardless of

whether such an N can be found, the speed density m(x) always tells us about the time the system

spends in the vicinity of the point x. More precisely, if we provide an initial condition x0 ∈ [a, b] for

the stochastic process obtained as the solution to dXt = µ(Xt)dt + σ(Xt)dWt, the expected time

taken by this process to exit the interval (x0 − ϵ, x0 + ϵ) is proportional to m(x0) as ϵ → 0 (Karlin

and Taylor, 1981, Chapter 15, Remark 3.2). This justified the name ‘speed density’. The quantity

M(p) =
∫ p m(q)dq is called the speed measure. If a quasi-stationary distribution (Collet et al.,

2013, definition 2.1) exists, the speed measure describes the quasi-stationary distribution (Collet

et al., 2013, section 6.1.1) of the Markov process. A quasi-stationary distribution is known to exist

under very general conditions for the kind of processes we study here (Champagnat and Villemonais,

2023).

In our case, we have a stochastic process for the change of type frequencies over time that takes

values in [0, 1] and is given by the solution to equation (9). In the rest of this section, we work
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with equation (8a) and thus do not account for influx terms λQi. For convenience, let us define

E(p) = s(p, NK) +
1

KNK
κ(p, NK) (S79)

V(p) =
1

KNK
(τ1(p, NK) + pκ(p, NK)) (S80)

where we have suppressed the NK dependence of E and V to reduce clutter. In this notation,

equation (9) becomes

dp = p(1 − p)E(p)dt +
√

p(1 − p)V(p)dWt (S81)

Comparing terms with (S77), we see that the speed density of our process is given by

m(p) =
1

p(1 − p)V(p)
exp

2

p∫ E(q)
V(q)

dq

 (S82)

For general functions E(p) and V(p), it is very often impossible to analytically calculate or predict

the behavior of the complete function defined by (S82). However, since we are primarily interested

in which trait frequencies p are likely, we can still make analytical progress by examining the

derivative dm/dp. If dm/dp is a strictly increasing function of p, then higher values of frequency

p are always favored, and species 2 is expected to go extinct more often than species 1. Likewise,

if dm/dp is a strictly decreasing function of p, lower frequencies of p are favored, and species 1 is

expected to go extinct. Lastly, points at which dm/dp = 0 correspond to extrema of the speed

density and can thus be used to find the most likely and least likely values of trait frequency in the

system.

We would therefore like to examine the behavior of dm/dp as a function of p. Differentiating

both sides of equation (S82) with respect to p, we find

dm
dp

= m(p)
[

2p − 1
p(1 − p)

+ 2
E(p)
V(p)

− 1
V(p)

dV
dp

]
(S83)
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which is Eq. 10 in the main text.

After substituting the functional form of V(p) from equation (S80), this yields (after some lines

of algebra):

dm
dp

= m(p)
[

2p − 1
p(1 − p)

+ 2
E(p)
V(p)

+
1

NK

dNK

dp
− 1

V(p)

(
κ(p, NK) + (1 − p)

dτ1

dp
+ p

dτ2

dp

)]
(S84)

Let us examine each term on the RHS of equation (S84). The first term on the RHS is (2p −

1)/p(1 − p). This expression is (anti)-symmetric about p = 0.5 and always drives the system

towards the boundaries of [0, 1]. It is thus uninteresting for calculating the sign of dm/dp.

Since V(p) must clearly be non-negative in order for equation (S81) to be well-defined, the

second term, E(p)/V(p), always has the same sign as E(p). Equation (S84) tells us that the speed

density (and thus the stationary distribution, when it exists) also depends on contributions from

the dWt term of equation (S81). We have split this contribution into two separate terms, the third

and fourth terms on the RHS of equation (S84), each of which we will examine individually.

The third term on the RHS of (S84) captures the effect of the frequency of species 1 on the

per-capita growth rate of the population as a whole. Thus, if species 1 is altruistic, mutualistic,

or commensal, then dNK/dp will be positive, whereas if the species is spiteful, competitive, or

amensal, dNK/dp will be negative. The sign of the third term on the RHS of (S84) thus depends

on the nature of the ecological interactions that species 1 is involved in — species that increase the

per-capita growth rate of the total population are favored, and those that decrease the per-capita

growth rate of the total population are disfavored.

The fourth term on the RHS of equation (S84) captures the effects of noise-induced selection

acting on differential turnover rates. Since E(p) also has both a 1/V(p) factor and a noise-induced

selection term, we are better off substituting the functional form of E(p) from (S79) into equation

(S84) and collecting all terms with a 1/V(p) factor so as to collect all terms corresponding to

selection (both classical and noise-induced). Upon doing this, we obtain
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dm
dp

= m(p)
[

2p − 1
p(1 − p)

+
1

NK

dNK

dp
+

1
V(p)

(
2KNKs(p, NK) + κ(p, NK)− (1 − p)

dτ1

dp
− p

dτ2

dp

)]
(S85)

The interpretations of the first two terms on the RHS of (S85) have already been explained above.

Since V(p) is always non-negative, we only need to look at the sign of the expression

2KNKs(p, NK) + κ(p, NK)− (1 − p)
dτ1

dp
− p

dτ2

dp
(S86)

The first term of (S86) is the effect of classical selection and has the same sign as the selection

coefficient s(p, NK). Notice that since this term is O(K) whereas all other terms in equation (S85)

are O(1), this term dominates the dynamics when K is large, again indicating that the effects

of natural selection dominate in large populations with non-zero selection coefficient. If instead

Ks(p, NK) is small, either through a small population size, weak selection (or no selection), or both,

the last three terms of (S86) play a stronger role. The second term of (S86) is simply the noise-

induced selection coefficient κ(p), and is thus positive whenever τ1 < τ2. This term thus captures

the direct mechanism of noise-induced biasing via noise-induced selection and causes the speed

density to be biased towards the species with lower per-capita turnover rates. However, when the

turnover rates depend on the frequency of traits, the last two terms of (S86) also affect the shape

of the speed density. These two terms capture the indirect mechanism of noise-induced biasing via

frequency-dependent turnover and bias the population towards those states which are associated

with lower rates of change of the population as a whole. Note that the total strength of the effect

of frequency dependence of a given type is inversely proportional to the current frequency of that

type (dτ1/dp is multiplied by 1 − p and dτ2/dp is multiplied by p). This reflects the intuitive

observation that stochastic effects on a focal type should play a stronger role when that type is

rare.
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S7 The infinite population limit recovers standard equations of

population biology

In this section, we show how our SDEs recover several classic equations of population biology in

the infinite population size limit.

Replicator-mutator equation

If w take K → ∞ in (S29), we obtain an ODE that reads:

dpi

dt
= (wi(x)− w)pi + λ

[
Qi(p)− pi

(
m

∑
j=1

Qj(p)

)]
(S87)

The first term of (S87) describes changes due to faithful (non-mutational) replication, and the

second describes changes due to mutation. For this reason, equation (S87) is called the replicator-

mutator equation in the evolutionary game theory literature, where the individual ‘types’ are inter-

preted to be pure strategies and the influx rate λ is a mutation rate, denoted by µ. If in addition,

each wi(x) is linear in x, meaning we can write wi(x) = ∑j aijxj for some set of constants aij, then

we get the replicator-mutator equation for matrix games, and the constants aij form the ‘payoff

matrix’. As is well-known, the replicator equation (without mutation) for matrix games with m pure

strategies is equivalent to the generalized Lotka-Volterra equations for a community with m − 1

species (Hofbauer and Sigmund, 1998), providing the connection to community ecology. Equation

(S87) is also equivalent to Eigen’s quasispecies equation from molecular evolution if each ‘type’ is

interpreted as a genetic sequence and each wi(x) is a constant function (Page and Nowak, 2002).

(Dynamical) Price equation

Taking K → ∞ in equation (S38) recovers the Price equation as the infinite population limit. Here,

we mean the Price equation as formulated in continuous time with time-varying characters (Lion,

2018; Day et al., 2020).
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d f
dt

= Cov(w, f ) +
(

∂ f
∂t

)
+ λ

(
m

∑
i=1

fiQi(p)− f
m

∑
i=1

Qi(p)

)
(S88)

Many authors additionally assume that the quantity f does not itself change over time at the

type level, meaning that ∂ fi/∂t ≡ 0 ∀ i and the feedback term thus disappears. This yields a

somewhat more familiar equation in continuous time (Lion, 2018). Standard texts also usually use

a version formulated in discrete time that is more general for single-step changes, but is dynamically

insufficient (Frank, 2012; Queller, 2017).

Fisher’s fundamental theorem of natural selection

Taking K → ∞ in (14) and noting that the process tends to a deterministic process as K → ∞, as

noted in section S7 (and thus the expectation value in the infinite population case is superfluous),

we obtain an ODE:

dw
dt

= σ2
w(t) +

(
∂w
∂t

)
(S89)

This is Fisher’s fundamental theorem in the presence of ecological feedbacks to fitness (Frank and

Slatkin, 1992; Kokko, 2021).

The equation for trait variances that appears in Lion, 2018

Taking K → ∞ in equation (S60) yields

dσ2
f

dt
= Cov

(
w, ( f − f )2

)
+ 2Cov

(
∂ f
∂t

, f
)
+ λ

[(
m

∑
i=1

( fi − f )2Qi(p)

)
+ σ2

f

m

∑
i=1

Qi(p)

]
(S90)

This is precisely equation (14) in Lion, 2018 with influx terms λQi.

32



Supplement to Bhat and Guttal 2024, Evolution in finite populations, Am. Nat.

S8 Noise-induced biasing in various specific contexts

In many social evolution models, cooperators are predicted to go extinct in infinite populations

but are actually favored by evolution in finite, fluctuating populations, causing a ‘reversal’ in the

direction of evolution predicted by natural selection (Houchmandzadeh and Vallade, 2012; Chotibut

and Nelson, 2015; Constable et al., 2016; McLeod and Day, 2019). McLeod and Day, 2019 have

recently shown that such reversals can occur in a wide array of social evolution models due to the

same effect that we recognize here as noise-induced biasing. Formally, all the models presented in

McLeod and Day, 2019 can be recovered in our framework by setting m = 2 and s(x) = −ϵc(x) for

a constant ϵ ∈ R and a non-negative function c(x) in our stochastic replicator-mutator equation

(Eq. S29). The function T(p) in McLeod and Day, 2019 — a quantity that varies in the various

models they study — is precisely the mean turnover τ in our framework.

In evolutionary epidemiology, models have shown that reduced virulence is more important than

increased transmission rate for pathogen spread in finite, fluctuating populations, especially when

the population size is small (Humplik et al., 2014; Parsons et al., 2018; Day et al., 2020). Indeed, if

the population is small or selection is weak, slower strains can have higher fixation probabilities than

faster strains even if the slower strain has a lower basic reproduction ratio (R0) than its competitor,

causing a complete reversal in the direction of evolution predicted in infinite populations (Parsons et

al., 2018). These results have recently been explained in a generic manner using both a replicator-

mutator/‘stochastic adaptive dynamics’ approach (Parsons et al., 2018) and a two-species Price

equation formalism (Day et al., 2020), though both these papers use assumptions and language

particular to evolutionary epidemiology. We note that equation (2.5) in Parsons et al., 2018 is

exactly equivalent to our stochastic replicator-mutator equation with no mutation (equation (S29)

with λ = 0) upto a change in notation upon substituting the specific birth and death rate functions

chosen in their paper into our equation (S29). Similarly, equation (5.1) in Day et al., 2020 is

exactly equivalent to our stochastic Price equation for 2 species (equation (S38) with m = 2) if

we write out w and τ in terms of per-capita birth and death rates. Our work can, therefore, be
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used to recapitulate these results and show that the effects they illustrate are not particular to

epidemiological models.

Lastly, noise-induced biases in population dynamics may also appear in the infinitesimal mean

as a deviation from the expected trajectory if we project the ecological dynamics onto a ‘slow

manifold’ through a separation of timescales argument, a common procedure for reducing the

dimension of stochastic dynamical systems (Constable et al., 2013; Parsons and Rogers, 2017).

A change of variables via a projection of the dynamics onto a manifold is responsible for the

‘noise-induced effects’ that appear in purely ecological models (i.e. models of population densities)

where dynamics are projected onto a manifold describing populations that are at equilibrium over

short timescales (Constable et al., 2016; Chotibut and Nelson, 2017; Mazzolini and Grilli, 2023). A

change of variables via projection onto a manifold is also at the heart of the stochastic ‘drift-induced

selection’ that drives evolutionary transitions between male and female heterogamety (XX/XY to

ZW/ZZ and vice versa) in stochastic models of the evolution of chromosomal sex determination

systems (Veller et al., 2017; Saunders et al., 2018). In models of sex determination, the projection

is onto a manifold describing populations in which the sex ratio is 1:1 (Veller et al., 2017; Saunders

et al., 2018). However, note that an additional stochastic term in a projected version of population

densities need not lead to selection in the evolutionary sense, namely in terms of changes in trait

frequencies (McLeod and Day, 2019).

S9 Connections with some other general frameworks

Our equations generalize Lion’s (2018) general framework of infinite population deterministic eco-

evolutionary dynamics to finite, fluctuating populations — taking K → ∞ in Eq. S29, Eq. S38,

and Eq. S60 recover equations (6), (11), and (14) in Lion, 2018 respectively. Just like in the

deterministic setting (Lion, 2018), equations for trait means (the Price equation, Eq. S38) and trait

variances (Eq. S60) can be systematically derived from the equation for changes in trait frequencies

(the replicator-mutator equation, Eq. S29) in our framework through repeated application of Itô’s
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formula. If we assume that the quantity f follows a Gaussian distribution, then the mean and

variance completely characterize the distribution, and thus, Eq. S29, Eq. S38, and Eq. S60

together specify the complete stochastic dynamics of the system.

Rice has proposed a stochastic version of the Price equation (Rice, 2020 and references cited

therein). Like the original Price equation, Rice’s equations are formulated as a general decompo-

sition of the phenotypic change between two given populations. They are thus the true stochastic

analog of the original Price equation, whereas our version, Eq. S38, is the analog of Lion’s (2018)

version of the Price equation in a continuous time, dynamically sufficient setting. Rice’s derivations

also treat fitness as fundamental, whereas we derive suitable notions of fitness and turnover from

demographic first principles. As a consequence, the ‘extra’ stochastic term corresponding to noise-

induced selection that appears in our equations fundamentally emerges from the stochasticity of the

underlying births and deaths of organisms and is thus of ecological/demographic origin, whereas

the ‘extra’ stochastic term in Rice’s equations emerges from the stochasticity of fitness alone when

viewed as a random variable (Rice, 2020). It thus need not, to the best of our knowledge, correspond

to the same effect we identify here.

There are also deep connections between the equations we present in this paper and those of

Week et al. (2021). Informally, the equations presented in Week et al. (2021) can be recovered

from our framework if we let the number of types m go to infinity and replace sums with integrals.

Making this intuition precise is rather (mathematically) involved (Bhat, 2024), but we provide a

summary of the idea below. We first require an intuitive explanation of how quantitative traits can

be modeled in a stochastic birth-death framework.

Populations bearing discrete traits can be characterized by a vector n = [n1, n2, . . . , nm] enu-

merating the number of individuals of each type. However, this cannot be done for populations

bearing quantitative traits since infinitely many distinct types may arise. Instead, we characterize

the population as a finite measure νt = ∑N(t)
i=1 δxi by placing a Dirac delta mass δxi at the location xi

corresponding to the trait value of the ith individual in a population consisting of N(t) individuals

at time t. The population dynamics can then be described in terms of a measure-valued stochastic
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process (or, in physics language, a ‘stochastic field theory’) that tracks how νt evolves over time.

Since we assume that every type has the same functional form for the birth and death rates, in

the discrete case, the set of birth rate functions {bi(n)}i=1,2,··· ,m (and analogously the death rate

functions) can alternatively be viewed as a single function b from {1, 2, ..., m} × [0, ∞)m → [0, ∞)

whose ith component gives us the birth rate of the ith individual. This alternative view makes it

clear what the analogous birth rate ‘function’ should look like for quantitative traits: The function

b (and similarly the death rate function) is now replaced by a functional B : T ×M(T ) → [0, ∞),

where T ⊆ R is the trait space describing the set of allowed trait values and M(T ) is the space of

‘functions’ (finite measures) on T . One can then show that under some suitable assumptions, it is

possible to carry out an analog of the ‘system size expansion’ we use in the supplementary of this

manuscript to approximate the finite measure νt as a function ϕ(x, t) describing the distribution

of population densities across the trait space. One can then derive stochastic partial differential

equations (SPDEs) for how the distribution of trait frequencies, the mean value of any trait, and

the variance of any trait change over time. These SPDEs end up being precisely the quantita-

tive trait analogs of the SDEs we present in the main text (ínformally, the ‘m → ∞ limit’ of the

m-dimensional system of SDEs we present in the main text of this manuscript).

With the broad outline explained above in mind, the connection of our equations with the

equations presented in Week et al. (2021) can be made precise. Week et al. (2021) work with an

asexual model with Gaussian mutation (their ‘SAGA’ - stochastic asexual Gaussian alleles). In their

model, individuals give birth to offspring with mutations, with mutants normally distributed about

the parent trait value with some small variance µ (their notation). Such mutation is approximated in

their framework by the Laplacian of the function describing the distribution of population densities

(i.e. as ‘diffusion’ across the trait space). Given a type x (an index i in the discrete case, now a

real number that is also the trait value) in a population ϕ (a vector x in the discrete case, now a

function), the connection between our equations and Week et al. (2021)’s equations can be formally
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made via the relations (our notation on the left, Week et al. (2021)’s notation on the right):

wx(ϕ) = m(x, ϕ)

τx(ϕ) = V(x, ϕ)

Qx(ϕ) =
1
2

∂2ϕ

∂x2

λ = µ

(Compare Eq. 3 in our manuscript with Eq. 20 in Week et al. (2021)). Further, in the equation

for the mean value (Their Eq. 21b, our Eq. S38) and variance (Their Eq. 21c, our Eq. S60) of a

quantity, they restrict themselves to the special case fx(ϕ) = x, the quantitative trait analog of

what in the discrete trait notation would be fi(x) = i. In this case, the influx terms of our equations

will vanish for Week et al. (2021)’s choice of Qx(ϕ). Formally, the influx terms in Eq. S38 and

Eq. S60 are all integrals of the form

∞∫
−∞

(x − x)kQ(x, ϕ)dx =
1
2

∞∫
−∞

(x − x)k ∂2ϕ

∂x2 dx

with either k = 1 or k = 2, and vanish upon using integration by parts and discarding the boundary

terms. Thus, the influx terms do not contribute to the dynamics, which is why Eq. 21b in Week

et al. (2021) corresponds to our Eq. S38 and Eq. 21c in Week et al. (2021) corresponds to our

Eq. S60. A derivation of the quantitative trait analogs of the equations we present in this paper,

along with a more precise explanation of the equivalence with Week et al., 2021, appears in Bhat,

2024.

S10 A more detailed explanation of the example in the main text

In this section, we flesh out the example introduced in Box 5 in more detail. To illustrate when

noise-induced selection can be important for population dynamics, we use a simple biologically

motivated example in this section. Several abiotic factors such as temperature and pH are known
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to be ecological ‘rate modulators’ that affect either the birth rate or death rate of organisms, with

obvious consequences for evolutionary dynamics (Fronhofer et al., 2023). To see how demographic

stochasticity may affect the effect of ecological rate modulators on evolutionary dynamics, consider

here two competing phenotypes, which we denote by 1 and 2. Though we stick to this ‘rate

modulation’ language henceforth, another potential interpretation of the model we study below

comes from epidemiology: In this case, the two types can be thought of as two competing strains

of pathogens, a ‘rate modulator’ that affects birth rates can be thought of as affecting transmission

rate, and a ‘rate modulator’ that affects death rates can be thought of as affecting virulence (Parsons

et al., 2018). We consider the case where type 1 is affected by the ecological rate modulator but

type 2 is not. For simplicity, we assume the population is closed with no mutations during birth

(i.e. λ = 0). Below, we use p to denote the frequency of type 1 individuals in the population.

For pedagogical clarity, we assume that rate modulation occurs by simply shifting the birth

and/or death rate by a constant. In equations, this can be modelled via the relations:

b(ind)
1 (p, NK) = b(ind)

2 (p, NK) + ϵb (S91a)

d(ind)
1 (p, NK) = d(ind)

2 (p, NK) + ϵd (S91b)

where ϵb and ϵd are real numbers describing the effect of the ecological rate modulator on the birth

and death rates respectively. Using the definitions of s and κ, we find

s(p, NK) = ϵb − ϵd (S92a)

κ(p, NK) = −[ϵb + ϵd] (S92b)

Note that if ϵb = 0, ϵd < 0, both s and κ are positive, whereas if ϵb > 0, ϵd = 0, s > 0 but

κ < 0. In other words, if type 1 has a decreased death rate (virulence in the epidemiological

case) but identical birth rate relative to type 2, type 1 is favored by both natural selection and

noise-induced selection. On the other hand, if type 1 has an increased birth rate (transmission
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rate in the epidemiology case) but an identical death rate relative to type 2, type 1 is favored by

natural selection but disfavored by noise-induced selection. Thus, all else being equal, reducing the

death rate is generically more favorable than increasing the birth rate by an analogous amount, an

observation that has been made in finite population models in epidemiology (Parsons et al., 2018),

social evolution (McLeod and Day, 2019), life-history evolution (Alexander and Wahl, 2008), and

cancer biology (Raatz and Traulsen, 2023).

For the rest of this example, we assume that ϵb > 0, ϵd > 0, i.e. that type 1 has both an

increased birth rate and an increased death rate compared to type 2. We may now ask, when is

the outcome of evolution different from that expected by infinite population dynamics?

Noise-induced biasing in the absence of natural selection

First, consider the situation ϵb = ϵd = ϵ. This corresponds to the two types having the same

growth rate, but type 1 having a faster pace of life than type 2. The selection coefficient and

noise-induced selection coefficient are

s(p, NK) = 0 (S93)

κ(p, NK) = −2ϵ (S94)

Thus, as expected, natural selection does not operate in the system. In the infinite population

limit, natural selection is the only force that affects population dynamics and we thus expect any

initial frequency p0 of type 1 individuals to remain unchanged in the population (to see this, take

K → ∞ in Eq. 9). Over short timescales, the effects of demographic stochasticity can be observed

by looking at the expected change in frequency E[dp]. Using Eq. 9 and substituting the functional

forms given by Eq. S92, we find

d
dt

E[p] = E

[
κ(p, NK)

NK
p(1 − p)

]
= − 2ϵ

KNK
E[p(1 − p)] (S95)
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Since the RHS of Eq. S95 is always negative for p ∈ (0, 1), we can infer that if the system begins

at any initial frequency p0 ∈ (0, 1), the proportion of type 1 individuals is expected to decrease on

average. If ϵb = ϵd, the ecological rate modulator is thus detrimental to the evolutionary fate of

type 1 individuals over short time scales in finite populations, despite infinite population models

predicting neutrality. This result is a manifestation of the ‘direct’ mechanism of noise-induced

biasing via the Gillespie effect (noise-induced selection): All else being equal, a faster pace of life

comes with a greater variance in change of population density within a given time interval since

there are simply more stochastic birth/death events taking place.

However, the speed density S77 depends not only on the expected change of frequency alone but

also on the variance in the change of frequencies. This stochastic effect, captured by the dW term

in Eq. 9, depends on the functional form of τ1(p, NK) (and not merely the difference κ = τ2 − τ1),

which we have not yet specified in our model (Eq. S91). For simplicity, let us assume that the

turnover rates τi depend linearly on p. Specifically, let us assume that τ1(p, NK) = bp + c, where b

and c are constants. c can be viewed as an ‘intrinsic’ turnover rate, and b as a frequency-dependent

component that may be either positive or negative. We are therefore restricting ourselves to linear

frequency dependence of τ1, but allowing both positive and negative frequency-dependence, with

the strength of frequency-dependence controlled by |b|. For convenience, let a = 2ϵd = −κ(p).

Note that since τ1 is the sum of two rates and p(1 − p)V(p) is the infinitesimal variance of the

trait frequency SDE, the parameters a, b, and c must be chosen such that τ1(p) = bp + c >

0, V(p) = (b − a)p + c > 0 ∀ p ∈ [0, 1] for the system to be biologically meaningful. In particular,

τ1(0, NK) and τ1(1, NK) must be non-negative, and we must thus have τ1(0, NK) = c ≥ 0 and

τ1(1, NK) = b + c > 0. We must also have V(1) > 0, and thus b + c − a ≥ 0.

Since we would like κ to still be given by Eq. S94, this automatically specifies τ2 as τ2 =

bp + c − 2ϵ. Thus, we assume τ1 and τ2 change in the same direction (increase or decrease) as the

frequency of type 1 individuals increases.
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In this case, we can exactly solve for the speed density. Note that we have

E(p) = − 2ϵd

KNK
(S96)

V(p) =
1

KNK
(τ1(p, NK)− 2ϵd p) (S97)

where a = 2ϵd = −κ(p). In our new notation, Eq. S96 and S97 become

E(p) = − a
KNK

(S98)

V(p) =
1

KNK
((b − a)p + c) (S99)

The speed density of the system can be written (from Eq. S82) as

m(p) =
1

p(1 − p)V(p)
exp

2

p∫ E(q)
V(q)

dq


⇒ m(p) =

KNK

p(1 − p)((b − a)p + c))
exp

2a

p∫ 1
(b − a)q + c

dq

 (S100)

We need to distinguish between two cases based on whether or not V is frequency-dependent.

Case 1: No frequency dependence in V(p)

If a = b, i.e. the frequency dependence of τ1 is positive with strength exactly equal to 2ϵd, Eq.

S100 becomes

m(p) =
1

p(1 − p)c
exp

2

p∫ −a
c

dq

 = C
1

p(1 − p)
e−αp (S101)

where α = 2a/c > 0 is a positive constant, and we use C to denote a constant whose precise value

is irrelevant (and thus may change from line to line below — the important thing is that C does

not depend on p and thus plays the role of a normalization constant).

The shape of the distribution given by Eq. S101 can be thought of as the combination of two

components: The term p(1 − p) is symmetric with respect to the transformation p → 1 − p (i.e.
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symmetric about p = 0.5) and thus does not favour either type of individual, whereas e−αp is a

strictly decreasing function of p and thus always favours lower frequencies of type 1 individuals.

If α is very small, the effect of e−αp is negligible and the distribution of types is approximately a

symmetric ‘U-shaped’ parabola centered at 0.5, with p = 0.5 being the least likely frequency. This

is the expectation we would have if neutral genetic drift was the only force at play: The distribution

is (approximately) symmetric with respect to the transformation p → 1− p, with p = 0 and p = 1

being the most likely states and p = 0.5 being the least likely state.

If, instead, α is not small, the function e−αp decays quickly and biases the distribution towards

lower values of p. In this case, the function is a distorted U-shape, with the minimum point being

somewhere in (1/2, 1). The extent of bias towards lower values of p increases as α increases.

Thus, in the case where 2ϵd = dτ1/dp, we can conclude that lower frequencies of type modula-

tors are always associated with a higher speed density, and the biasing is stronger as the ratio of

the rate modulation (ϵd) to the intrinsic frequency-independent turnover rate (c) increases. Note

that the shape of the speed density (and thus the extent of deviation from neutrality in terms

of time spent/likelihood of observation conditioned on non-fixation) does not depend on the total

population size KNK.

Case 2: Frequency dependence in V(p)

Assuming a ̸= b, we can calculate the exponential term in Eq. S100 as

exp

2

p∫ E(q)
V(q)

dq

 = exp

−2a

p∫ 1
(b − a)q + c

dq

 (S102)

= C exp
(
− 2a

b − a
[log((b − a)p + c)]

)
= C[(b − a)p + c]−

2a
b−a (S103)

where we once again use C to denote a multiplicative constant whose precise value is irrelevant.

Thus, the speed density S100 is given by

m(p) =
C

p(1 − p)
[(b − a)p + c]−(γ+1) (S104)
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where we have defined γ = 2a/(b − a).

Equations S101 and S104 are exact solutions for the speed density, and are the quantities plotted

in Figure II in Box 5. For convenience, we reproduce the figure below

Figure S1: Two distinct noise-induced effects that bias evolutionary dynamics. A. If the magnitude of the
noise-induced selection coefficient κ = −2ϵ is large relative to the intrinsic turnover rate c, the direct mechanism of
noise-induced biasing operates. Parameters are chosen such that V(p) = τ1 + pκ = (b − 2ϵ)p + c is not frequency-
dependent (blue: ϵ = 0.5, b = 1, c = 10; red: ϵ = 0.5, b = 1, c = 0.5). B. The speed density can also be biased if
V(p) is frequency-dependent. This indirect mechanism of noise-induced biasing favours the type that reduces V(p).
Parameters in this panel are chosen such that | κ | is small relative to c and thus the strength of the fast mechanism
is negligible (blue: ϵ = 0.025, b = 0.05, c = 10; green: ϵ = 0.025, b = 50, c = 10; red: ϵ = 0.025, b = −8.5, c = 10)

Figure S1 illustrates two distinct ways in which stochasticity alone can bias trait frequency

distributions in finite, fluctuating populations. If dynamics are truly neutral (in the sense of the two

types being exactly equivalent) and the system begins with p = 0.5, then both types are equally

likely to increase/decrease. The speed density is thus equal to 1/p(1 − p) (up to a constant).

Noise-induced effects can bias this distribution in two distinct ways (Box 4): (1) The noise-induced

selection coefficient κ can bias the expected trajectory. This is noise-induced selection and can be

identified with the Gillespie effect from bet-hedging theory as a selection for reduced variance in

density change dxi. Since κ = −2ϵ < 0, noise-induced selection always favours the type with the

slower pace of life (Fig. S1A). (2) A second noise-induced effect appears as a biasing of the speed

density via the last term of Eq. 10. We call this an ‘indirect’ mechanism of bias because it is not
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observable in terms of expectations E[·] but is visible in terms of time spent in various states. For

our example, we can calculate

V(p) = τ1 + pκ = bp + c + pκ

⇒ dV
dp

= b − κ (S105)

Equation S105 tells us that this indirect mechanism favours type 1 if b < κ, type 2 if b > κ, and does

not operate if b = κ. Thus, the indirect mechanism may cause biases in either the same direction or

the opposite direction of noise-induced selection based on the details of the frequency-dependence

of the per-capita turnover rates (Fig S1B).

Noise-induced biasing in the presence of natural selection

Consider now instead a situation in which the rate modulator affects the birth rate more than it

does the death rate (i.e. ϵb > ϵd > 0). In this case, the selection coefficient s in Eq. S92 is always

positive, and thus natural selection always favors type 1 individuals. As before, noise-induced

biases may manifest in two distinct ways. First, noise-induced selection may invert the direction

of the expected trajectory E[dp/dt]. Noise-induced biasing may also occur through the indirect

mechanism. We examine the two possibilities one by one.

Since s > 0, we can use Eq. 9 to say the expected trajectory is in the opposite direction of

infinite population predictions if s + κ/KNK < 0. Using Eq. S92, we see that this is equivalent to

ϵb − ϵd −
1

KNK
(ϵb + ϵd) < 0 ⇒

(
1 − 1

KNK

)
ϵb <

(
1 +

1
KNK

)
ϵd

⇒ ϵb

ϵd
<

KNK + 1
KNK − 1

(S106)
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Using inequality S106 in Eq. S92a, we can arrive at the inequality

s = ϵd

(
ϵb

ϵd
− 1
)
< ϵd

(
KNK + 1
KNK − 1

− 1
)

⇒ s(KNK − 1) < 2ϵd (S107)

Thus, noise-induced selection can reverse the expected trajectory of evolutionary dynamics when the

product s(KNK − 1) is sufficiently small, i.e. when either selection is weak (s is small), populations

are small (KNK is small), or both.

We now also examine the contributions of the noise terms to the speed density. We see from

Eq. 10 that we can say type 1 is favoured by the indirect mechanism when dV/dp < 0. Using the

definition of V from Eq. 11b and substituting the functional forms given by Eq. S92, we see that

dV/dp < 0 is equivalent to
dτ1

dp
< ϵb + ϵd (S108)

If τ1 is a constant, i.e. the per-capita birth rates b(ind)
1 and d(ind)

1 do not depend on population

composition, inequality S108 will automatically be satisfied as long as there is some rate modulation

in the system (i.e. ϵb and ϵd are not both 0). If τ1 is frequency dependent, S108 is satisfied whenever

τ1 exhibits negative frequency dependence, though it may also be satisfied if τ1 exhibits weak

positive frequency dependence. We do not explore the effects of the indirect mechanism further for

the sake of conciseness. However, we note that since we already studied the behaviour of E(p) above,

it is now straightforward to determine from Eq. 10 when this latter effect combines with E(p)/V(p)

to make the RHS of Eq. 10 positive. In Supplementary section S11, we provide an example system

in which noise-induced selection can never reverse the expected trajectory E[dp/dt], but where the

indirect mechanism of noise-induced biasing may nevertheless affect the distribution of types in the

population. In Supplementary section S12, we provide an example of a stochastic Lotka-Volterra

competition model with both natural selection and mutation in which noise-induced selection can

reverse the direction of evolution predicted by natural selection-mutation balance.
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S11 An example in which noise-induced selection can never

reverse the direction of evolution over short timescales, but where

the indirect mechanism may still operate

Consider a slightly modified version of the example covered in the main text. Consider here two

types in which rate modulation decreases the birth rate and increases the death rate of type 1

individuals. In equations, such modulation can be modelled via the relations:

b(ind)
1 (p, NK) = b(ind)

2 (p, NK)− ϵb (S109a)

d(ind)
1 (p, NK) = d(ind)

2 (p, NK) + ϵd (S109b)

where ϵb and ϵd are non-negative real numbers describing the effect of the ecological rate modulator

on the birth and death rates respectively. Note that in this case, ϵb cannot be arbitrarily large:

we require ϵb ≤ inf
p∈[0,1]
NK≥0

{b(ind)
2 (p, NK)} to avoid negative birth rates. As in the main text, we can

calculate the selection coefficient and noise-induced selection coefficient to find

s(p, NK) = −[ϵb + ϵd] (S110a)

κ(p, NK) = ϵb − ϵd (S110b)

Here, s is always negative whenever there is some rate modulation in the system (i.e. ϵb and ϵd

are not both 0), and thus natural selection always favors type 2 over type 1. Note that here, when

evolution is neutral with respect to natural selection (s = 0), we must have ϵb = ϵd = 0. In this

case, b(ind)
1 (p, NK) = b(ind)

2 (p, NK) and d(ind)
1 (p, NK) = d(ind)

2 (p, NK), and thus the two types are

exactly equivalent in every respect.

We first examine when the sign of E[dp/dt] is reversed relative to infinite population expecta-

tions, i.e. when noise-induced selection can reverse evolutionary outcomes. Since s < 0, we can use
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Eq. 9 to say the expected trajectory is in the opposite direction of infinite population predictions

if s + κ/KNK > 0. Using Eq. S110, we see that this is equivalent to

−[ϵb + ϵd] +
1

KNK
(ϵb − ϵd) > 0 ⇒

(
1 − 1

KNK

)
ϵb +

(
1 +

1
KNK

)
ϵd < 0 (S111)

⇒ ϵb

ϵd
< −KNK + 1

KNK − 1
< 0 (S112)

Since ϵb and ϵd are both non-negative, so is their ratio, and thus inequality S112 can never be

satisfied. We therefore conclude that noise-induced selection cannot reverse the sign of E[dp/dt]

relative to infinite population expectations in this case.

However, the speed measure may still be biased due to the indirect mechanism. We see from

Eq. 10 that type 1 may be favoured via the indirect mechanism if dV/dp is sufficiently negative.

Using the definition of V from Eq. 11b, we see that dV/dp is negative whenever

dτ1

dp
< ϵb − ϵd (S113)

Note, however, that for this system, since E(p) will always be positive, dV/dp < 0 is a necessary

but not a sufficient condition for deviation from infinite population expectations — we also require

dV/dp to be large enough in magnitude relative to E(p) to ensure that the RHS of Eq. 10 as a

whole becomes positive.

S12 An example of non-neutral competition where evolution

does not proceed in the direction of natural selection due to

noise-induced effects

In this section, we provide an example of resource competition with both natural selection and

mutation in which noise-induced selection reverses the direction of evolution predicted by natural

selection.
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Consider a community that contains two types of birds, say type 1 and type 2. These birds

compete for limited resources, but in a peculiar manner: Though the two birds feed on different

food sources, the trees that type 1 birds use for nesting are the same as those that the type 2 birds

rely on for food. Both types are territorial and do not tolerate other individuals of either type on

either their nesting or feeding sites. Thus, competition between the two types affects the birth rate

of type 1 birds (because they can’t find good nesting sites) but the death rate of type 2 birds (due to

starvation), whereas intratype competition affects the death rate in both cases due to competition

for food sources. We also assume that when individuals give birth, they may give birth to offspring

of the opposite type (due to mutations) at a rate λ > 0. Thus, the influx rate λ here is a mutation

rate, and we will therefore denote it by λ = µ to align with standard notational conventions. Let

ni be the number of type i individuals (which may vary over time). Assuming trees and birds are

both randomly distributed through the landscape and the population dynamics of birds has linear

density dependence, the simplest model that can incorporate these features of resource competition

is given by:

b1(n1, n2) = n1 − (1 + ϵ)
n1n2

K
+ µn2 ; d1(n1, n2) =

n2
1

K

b2(n1, n2) = n2 + µn1 ; d2(n1, n2) =
n2

2
K

+
n1n2

K

(S114)

where K is a carrying capacity for the habitat, similar to Lotka-Volterra competition, and ϵ is a

parameter, which as we shall see below, quantifies which type has a competitive advantage. Note

that ϵ must be chosen such that b1(n1, n2) is always non-negative.

Moving to density space via the change of variables xi = ni/K, letting x = [x1, x2]T, and

comparing terms with Eq. S4, we see that the per-capita fitness wi of each type is:

w1(x) = 1 − x1 − (1 + ϵ)x2 = 1 − pNK − (1 + ϵ)(1 − p)NK

w2(x) = 1 − x1 − x2 = 1 − pNK − (1 − p)NK

where NK = x1 + x2 is the (scaled) total population size and p = x1/NK is the frequency of

type 1 individuals in the population. In frequency space, we thus see that the selection coefficient
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s := w1 − w2 is given by

s(p, NK) = −ϵ(1 − p)NK (S115)

This calculation makes it clear that ϵ controls the strength and direction of natural selection

operating in the system — when ϵ > 0, natural selection favors type 2, whereas when ϵ < 0, type

1 is favored. When ϵ = 0, the two types of birds have the same fitness and there is no natural

selection operating in the system. If we now compute the per-capita turnover rates τi of each type,

we have

τ1(x) = 1 + x1 − (1 + ϵ)x2 = 1 + pNK − (1 + ϵ)(1 − p)NK

τ2(x) = 1 + x1 + x2 = 1 + NK

and the noise-induced selection coefficient κ := τ2 − τ1 is therefore

κ(p, NK) = (2 + ϵ)(1 − p)NK (S116)

Note that when ϵ = 0, s vanishes but κ does not, meaning that the system exhibits noise-induced

selection but no natural selection. Further, whenever ϵ > 0 or ϵ < −2, s and κ have opposite signs,

i.e. natural selection and noise-induced selection act in opposite directions. Here, focusing on the

case ϵ > 0, we see from Eq. S115 that natural selection favors type 2, whereas Eq. S116 tells us

that noise-induced selection favors type 1.

Finally, we also have Q1(p) = (1 − p), Q2(p) = p. Substituting all these functional forms into

Eq. S29 now tells us (after some algebra) that the frequency of type 1 individuals in the population

obeys the SDE
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dp =

[
p(1 − p)2

[
2
K
− ϵ

(
NK(t)−

1
K

)]
+ µ(1 − 2p)

(
1 − 1

KNK(t)

)]
dt

+
1√

KNK(t)

√
p(1 − p) [1 + NK(t) (1 − (2 + ϵ)(1 − p)2)] + µ [1 − 3p(1 − p)]dWt

(S117)

where Wt is a one-dimensional Wiener process. Upon substituting our functional forms of fitness

and turnover into Eq. 7, we find that the total scaled total population size NK obeys the SDE

1
NK

dNK = [1 + µ − NK (1 + ϵp(1 − p))] dt +
1√

KNK

√
1 + µ + NK (1 − ϵp(1 − p))dWNK

t

(S118)

where WNK
t is a one-dimensional Wiener process. We are now in a position to study the behaviour

of this system.

The infinite population limit

If we let K → ∞, the SDE for type frequency given by Eq. S117 reduces to an ODE

dp
dt

= −ϵNK p(1 − p)2 + µ(1 − 2p) (S119)

When there is no mutation and no selection in the system (µ = ϵ = 0), the RHS of Eq. S119

vanishes, and thus, any initial trait frequency p0 is expected to remain unchanged forever. If we

switch off mutation alone (µ = 0, ϵ ̸= 0), it is easy to check that the type favoured by selection will

become fixed in the population. Instead, if we switch off selection alone (µ ̸= 0, ϵ = 0), mutations

drive the population to a state in which both types are equally prevalent (i.e., p = 0.5). When both

selection and mutation are present in the system, the stable fixed point in the infinite population

limit will lie in (0, 1/2) when ϵ > 0, and will lie in (1/2, 1) when ϵ < 0.
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Deviations from neutrality due to noise-induced selection in finite, fluctuating populations

The effects of noise-induced selection on the expected dynamics are clearest when there is no natural

selection (ϵ = 0) and no mutation (µ = 0): In this case, the equation for trait frequencies (Eq.

S117) becomes

dp =
2p(1 − p)2

K
dt +

1√
KNK(t)

√
p(1 − p) [1 + NK(t) (1 − 2(1 − p)2)]dWt (S120)

If we now take expectations on both sides, the stochastic integral term vanishes and we obtain an

ODE for the expected trait frequency in the population. This ODE takes the form

d
dt

E[p] =
2
K

E[p(1 − p)2] (S121)

Since the RHS is always positive for p ∈ (0, 1), we conclude that the frequency of type 1 birds

is always expected to increase until type 1 becomes fixed in the population. Thus, noise-induced

selection, in this case, has led to a deviation from evolutionary neutrality in the expected dynamics

— in the infinite population case, any initial trait frequency p0 is expected to remain unchanged

forever, whereas for finite, fluctuating populations, assuming p0 ̸∈ {0, 1}, the trait frequency of

type 1 birds is expected to increase until type 1 eventually fixes in the population. Note that unlike

in neutral drift, type 1 is always expected to be the type that becomes fixed in the population

despite the two types having the same fitness.

Reversal of the direction of evolution in finite, fluctuating populations

For the birth-death processes of the type we study in this paper, the entire population will go

extinct in finite time with probability 1 (Ethier and Kurtz, 1986). Thus, the true stationary

distribution for our system is thus the trivial state x1 = x2 = 0, a state at which p is undefined.

However, the expected time to extinction is often so large as to be biologically meaningless, and

in such cases, we can instead speak of the ‘quasi-stationary distribution’ of the stochastic process,
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obtained by only examining the system before the population goes extinct (Ethier and Kurtz,

1986; Karlin and Taylor, 1981). Thus, we are interested in the behaviour of the system in (p, NK)

space conditioned on NK > 0. To study the behaviour of the trait frequency when the population

is far from extinction, we simply use the naive assumption NK ≡ 1 to arrive at an approximate

description of the system. As an aside, we note that better approximations could be made via the

so-called ‘weak noise approximation’ or ‘linear noise approximation’ (Van Kampen, 1981; Black

and McKane, 2012), though we do not do so here. Under the approximation NK ≡ 1, the speed

density m(p) is given by (see Supplementary section S6)

m(p) =
N

G(p)
exp

 p∫
0

F(q)
G(q)

dq

 (S122)

where N is a normalization constant and F and G are functions given by

F(p) := p(1 − p)2 [2 − ϵ (K − 1)] + µ(1 − 2p) (K − 1)

G(p) := p(1 − p)
(
2 − (2 + ϵ)(1 − p)2)+ µ (1 − 3p(1 − p))

(S123)

Since the above solution is an approximation, we also conduct exact stochastic individual-based

simulations of the complete system defined by Eq. S114 using the Gillespie algorithm. The results

of the simulations, as well as the solution predicted by Eq. S122, are plotted for a small ϵ > 0

(corresponding to weak selection against type 1) in figure S2.

For low values of K and ϵ, both the stochastic individual-based simulations and the approximate

solution given by Eq. S122 indicate that noise-induced selection causes the distribution of types in

the population to be biased in favor of type 1 (rightmost peak in Fig S2A) despite natural selection-

mutation balance predicting a polymorphism in which type 2 individuals are over-represented. This

bias disappears when K and ϵ are high, i.e. populations are large and natural selection is strong

(Fig S2B).
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Figure S2: Predictions of our resource-competition model for various parameters. The quasi-
stationary distribution has been plotted for (A) K = 500, ϵ = 0.0005, and (B) K = 5000, ϵ = 0.005.
Blue points are from 100 independent Gillespie simulations of the exact birth-death process defined
by Eq. S114, each supplied with the initial condition n1 = n2 = K/2 and allowed to run for
105 timesteps or until the complete population went extinct. The red dotted line is derived from
numerically evaluating the RHS of equation Eq. S122. The solid black line is the infinite population
limit, obtained by solving equation Eq. S119 under the approximation NK ≡ 1. For all plots in
this figure, µ = 0.01.
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