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Abstract 27 
 28 
A classic result in theoretical ecology states that an increase in the proportion of mutualistic interactions in 29 
unstructured ecological communities leads to a loss of stability to external perturbations.  However, the fate 30 
and composition of the species that constitute an unstable ecology community following such perturbations 31 
remains relatively unexplored. In this paper, we use an individual-based model to study the population 32 
dynamics of unstructured communities following external perturbations to population numbers. We find that 33 
while mutualistic interactions do indeed destabilize communities, the entire community is rarely wiped out 34 
following a perturbation. Instead, only a subset of the ecological community is driven to extinction, and the 35 
species that go extinct are more likely to be those engaged in a greater number of competitive interactions. 36 
Thus, the resultant community formed after a perturbation has a higher proportion of mutualistic interactions 37 
than the original community.  We show that this result can be explained by studying the dynamics of the 38 
species engaged in the highest number of competitive interactions: After an external perturbation, those species 39 
that compete with such a ‘top competitor’ are more likely to go extinct than expected by chance alone, whereas 40 
those that are engaged in mutualistic interactions with such a species are less likely to go extinct than expected 41 
by chance alone. Our results provide a potential explanation for the ubiquity of mutualistic interactions in 42 
nature despite the known negative effects of mutualism on community stability. 43 
 44 
 45 
 46 
Keywords:  Mutualism; Individual-based model; Interspecific interactions; Ecological stability; Community 47 
ecology; Lotka-Volterra;   48 
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Introduction 49 
 50 
One of the central questions in community ecology asks whether observed patterns of interspecific interactions 51 
can be explained using ecological principles (Dobson et al., 2020; Sherratt et al., 2009; Sutherland et al., 2013). 52 
An important notion in this regard is the ‘stability’ of a community i.e., its ability to withstand external 53 
disturbances, and how it is affected by interactions between the constituent species (Sherratt et al., 2009). 54 
While the effects of interaction patterns on community stability have been extensively studied in the literature 55 
(Allesina and Tang, 2012; Coyte et al., 2015; May, 1973; Qian and Akçay, 2020; Serván et al., 2018; Stone, 56 
2020), the question of what happens to unstable communities following a perturbation has received much 57 
lesser attention. In this paper, we ask whether all species in a community go extinct after a perturbation, and if 58 
not, whether the composition of the community in terms of the interaction patterns is changed following species 59 
loss.  60 
 61 
The interactions between two species in a community can be broadly classified into three types: competitive, 62 
cooperative (mutualistic), and exploitative (Allesina and Tang, 2012). When two competing species interact, 63 
both are adversely affected and perform worse than if the other were absent. This could be due to several 64 
reasons, including competition for shared resources or the secretion of toxins that harm members of the other 65 
species. Contrastingly, mutualistic species help each other grow, for example, by providing each other with 66 
essential resources. Finally, exploitation refers to the phenomenon where one of the two interacting species 67 
benefits from the interaction, whereas the other is debilitated. This can happen through predation or parasitism, 68 
in which individuals of one species actively consume part or whole of individuals of the other species.  69 
 70 
Modeling all species interactions in a community through pairwise interactions (as in Lotka-Volterra type 71 
models), interspecific effects can be collected in a so-called ‘interaction matrix.’ The i-jth entry of the 72 
interaction matrix quantifies the effect of species j on the growth rate of species i. This, of course, need not be 73 
exclusive to pairwise interactions alone, as higher-order interactions among multiple (greater than 2) species 74 
may be decomposed into multiple pairwise interactions. Diagonal entries of such a matrix capture intraspecific 75 
competition (self-inhibition) of the species. If we assume, as is often done (e.g. (Allesina and Tang, 2012; 76 
Coyte et al., 2015; May, 1973)), that interactions within the community are completely random (unstructured), 77 
this matrix can be entirely characterized by measuring the fraction of mutualistic (𝑝𝑚), competitive (𝑝𝑐), and 78 
exploitative (𝑝𝑒) interactions present. Under such a scenario, the question of how community interaction 79 
patterns affect stability reduces to how these three numbers affect stability. 80 
 81 
Previous theoretical studies in the infinite species richness limit have shown that for a given magnitude of self-82 
inhibition, communities with a greater fraction of mutualistic interactions (higher pm) are less likely to be stable 83 
(Allesina and Tang, 2012; Coyte et al., 2015) in the sense of being able to return to the same initial 84 
configuration of species abundances following an external perturbation. These results were extended to a 85 
system with finite (but large) species richness using a computational IBM (Coyte et al., 2015). The latter study 86 
also showed that higher pm decreases the persistence of a community, i.e., the probability that no species within 87 
the community will go extinct following random perturbations to species abundances. Since environmental 88 
conditions are seldom constant, perturbations are ubiquitous in nature. If communities with a large fraction of 89 
mutualistic interactions are unstable, and unstable communities are more likely to experience species loss, 90 
mutualistic communities would be less likely to be found in nature.  However, this insight is difficult to 91 
reconcile with the empirical observation that reasonable number of positive interactions (mutualism and 92 
commensalism)  are abundant in ecological communities (Kehe et al., 2021), with some communities almost 93 
solely comprising of mutualistic interactions (Machado et al., 2021).  94 
 95 
 96 
Another issue in terms of community composition relates to the relative strengths of the intra-specific and 97 
inter-specific interactions. Theoretical studies (Allesina and Tang, 2012; Coyte et al., 2015; May, 1973) 98 
suggest that species-rich, randomly assembled communities are overwhelmingly likely to be unstable.  This 99 
insight is congruent with the observation that the interaction networks of large microbial communities in nature 100 
often have low connectivity (Yonatan et al., 2022).  If many species-rich communities are likely to be unstable, 101 
several questions arise related to their fate. For example, if an external perturbation causes some extinctions in 102 
a randomly assembled community, do all species go extinct? If not, then is the identity of the species that go 103 
extinct random, or determined by their interactions with other members of the community?  104 
 105 
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In this paper, we study the effects of interspecific interactions on both community persistence as well as 106 
resultant community composition in the face of external perturbations. We employ a stochastic individual-107 
based model (IBM) in which we supply rules at the species level and let population-level patterns emerge 108 
spontaneously. While we focus on unstructured communities for the rest of this article, our approach is general 109 
and can easily be extended to analyze the stability of communities with arbitrary interaction structures. Our 110 
primary results indicate that perturbations to unstable communities do not necessarily result in all species of 111 
the community going extinct. Instead, we find that perturbations often result in the extinction of only a few 112 
species and the formation of a new “sub-community” with fewer species. We observe that while communities 113 
with a greater fraction of mutualistic interactions are more likely to experience extinctions of some species, 114 
the resultant community formed after the extinctions is found to have a greater fraction of mutualistic 115 
interactions than the original community, implying that species which partake in competitive interactions are 116 
more likely to be selectively removed. We then study the community dynamics to answer why species 117 
participating in competitive interactions are more likely to go extinct.  118 

 119 
Methods 120 
 121 
Model Overview 122 
 123 
We present a brief overview of the model here, with all the relevant details in the following subsections. 124 
This study used an Individual-Based Model based on a previous framework (Coyte et al., 2015). In this 125 
framework, every species interacts with every other species either mutualistically, competitively, or 126 
exploitatively. Let pm, pc, and pe denote the fraction of total mutualistic, competitive or exploitative 127 
interactions, respectively. Following usual conventions (Allesina and Tang, 2012; Coyte et al., 2015; May, 128 
1973; Serván et al., 2018), we assume that all species have the same level of intraspecific competition, denoted 129 
by -s. To study the effects of species interactions on persistence, we initialize a community with a specified 130 
(pm, pc, pe) at equilibrium determined from Lotka-Volterra dynamics. To do this, we generate an interaction 131 
matrix such that a randomly drawn interspecific interaction will be mutualism with probability pm , competition 132 
with probability pc , and exploitation with probability pe. Interaction strengths are drawn from a gamma 133 
distribution.  We then initialize the population with a random initial configuration of population densities, and 134 
adjust the growth rates of each species such that this initial configuration is a fixed point of the generalized 135 
Lotka-Volterra equations. We then perturb this community by killing off a fixed, relatively small number of 136 
randomly chosen individuals (for details, see below). The strength of this perturbation was sufficiently small 137 
such that no species went extinct due to the perturbation alone. Thus, any subsequent species extinctions would 138 
be driven by the dynamics of biotic interactions within the community following the perturbation. We observe 139 
how species abundances vary following such a perturbation by allowing the community to stabilize to a new 140 
steady state according to the generalized Lotka-Volterra equations. 141 
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 142 
Figure 1: A schematic description of our IBM. The model is initialized with a set of parameters and a time 143 
counter set at t=0. In this diagram, t is the number of time steps in the model (Not to be confused with the 144 
actual time for which the dynamics are simulated; the two differ due to adaptive rescaling of the growth rates, 145 
see Methods section). The model is allowed to run for a total of T timesteps. The community follows Lotka-146 
Volterra dynamics, except when tp timesteps have elapsed, at which point the population experiences an 147 
external perturbation that kills off some individuals of each species. If at any time the Lotka-Volterra dynamics 148 
predict that the total population size  𝑁 =  ∑ 𝑁𝑖𝑖  of the community exceeds a maximum allowed size, a random 149 
fraction of the community is eliminated until the total population size is below the maximum allowed size. 150 
Refer to the main text for details of the model and the parameter values chosen. 151 
 152 
Figure 1 provides a schematic description of our modeling scheme. To avoid the possibility of only observing 153 
the effects of specific network topologies, we randomize the specific interactions between species within a 154 
community between replicates such that only the effects of the proportion of each interaction type (as opposed 155 
to the specific network topology) were kept constant. Since an extinction in a community reduces the species 156 
richness of the community and thus reduces the number of interactions, we define a new interaction matrix 157 
following extinctions, where the interaction effects from the extinct species have been set to 0. The effects of 158 
any potential extinctions on community composition can then be studied by comparing the species richness 159 
and the interaction matrix at the beginning and the end of the simulation. For simplicity, we present results for 160 
pe = 0 (i.e., communities where all interactions are mutualistic or competitive) in the main text. Results with 161 
exploitation are present in the supplementary information (Figs S1-S7). 162 
 163 
 164 
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Initialization and static parameters 165 
 166 
The world of the simulation is a 50×50 2D square lattice with periodic boundary conditions. Each lattice site 167 
is occupied by, at most, a single individual. Every individual interacts with every other individual, and thus 168 
interactions are non-local. An individual can only reproduce if an empty space is adjacent to the focal 169 
individual. The community is initialized with S different species, all interacting with each other (this 170 
corresponds to setting the connectivity C = 1 in the Coyte et al. 2015 IBM). The total population size is capped 171 
at 90% lattice occupancy at any given time. Thus, our simulations could have a maximum of 2250 individuals 172 
coexisting at a given time in a given simulation run. An obvious drawback of this design is a limit on how 173 
many species we can include in our community. However, highly species-rich communities require each 174 
species to have high self-inhibition, at times orders of magnitude greater than the other interactions, to ensure 175 
stability of the community as a whole (Allesina and Tang, 2012; Coyte et al., 2015; May, 1973; Serván et al., 176 
2018). Species-rich communities in which interspecific interactions are non-negligible relative to intraspecific 177 
interactions are therefore inherently unstable, and studying the effects of the distribution of interaction patterns 178 
(mutualism, competition, and exploitation) in such communities is thus of limited biological use.  179 
 180 
 181 
Interactions and population dynamics 182 
 183 
Population dynamics are assumed to follow the generalized Lotka-Volterra equation, which, in matrix form, 184 
reads 185 
 186 𝑑𝑥𝑑𝑡 =  𝑥(𝑟 + 𝐴𝑥) 

( 1 ) 

 187 
 188 
For a community with S species, equation (1) is an S-dimensional equation. Here, 𝑟 is an S-dimensional vector 189 
of intrinsic growth rates, and the interaction matrix A is an S × S matrix that captures the effects of interspecific 190 
interactions. The ij-th entry of the matrix, which we denote by aij, describes the effect of species j on the growth 191 
rate of species i.  Diagonal entries of this matrix are -s, where s, the self-inhibition, is a parameter that controls 192 
the strength of intraspecific competition. For off-diagonal entries, the magnitude of aij is drawn from a Gamma 193 
distribution with a mean of 0.25 and a variance of 0.01.  The signs of aij are determined randomly such that 194 
species i and j have a mutualistic interaction (+/+) with probability pm, have a competitive interaction (-/-) with 195 
probability pc, and an exploitative interaction (+/-) with probability (1- pm - pc). In the case of an exploitative 196 
interaction, each species is equally likely to be the one that is benefited. For all simulations in the main text, 197 
we set pm and pc such that pm+pc=1. Thus, there were no exploitative interactions in the community. Since we 198 
fill the interaction matrix according to probabilistic rules, pm,  pc, and pe are not the realized values in any given 199 
simulation but are the parameters used to determine the probability of an interaction being mutualistic, 200 
competitive, or exploitative. Each species is assigned a random population density, and the growth vector r is 201 
chosen such that the population densities at initialization are a fixed point for the Lotka -Volterra dynamics. 202 
Thus, given a realized interaction matrix A and a randomly initialized population vector x0, we set the growth 203 
rate to 204 
 205 𝑟 =  −𝐴𝑥0 206 
 207 
This ensures that the RHS of Eq. (1) becomes zero at the initial community configuration x0. 208 
 209 
 210 
Perturbation and extinctions 211 

 212 
Following a previous study (Coyte et al., 2015), we implement a perturbation five time steps into the simulation 213 
by eliminating 10% of the population of each species. The individuals eliminated are chosen at random. The 214 
simulation is then allowed to run until T=750 time steps have passed. For consecutive perturbations, as depicted 215 
in Figure 1C, we execute a secondary perturbation at 750 time steps and allow the system to run for an 216 
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additional 750 time steps (i.e., for a total time of T=1500). These particular time steps are chosen as the 217 
population attained an equilibrium well before this time in sample simulations. If, at any point in the 218 
simulation, the growth rates predicted a population size that exceeded the maximum population size allowed 219 
by the simulation, a random fraction of the population is killed off such that the new population size is below 220 
the maximum allowed population size.  221 
 222 
 223 
Computing realized growth rates following a perturbation and an adaptive timestep 224 
 225 
Following the perturbation, the community is no longer at the density x0 and is thus no longer at equilibrium 226 
for the Lotka-Volterra dynamics defined by Eq. (1). While computing the resultant population dynamics, we 227 
rescale the growth rates to allow for an adaptive timestep using a method introduced in a previous study (Coyte 228 
et al., 2015). We first define a parameter 𝑔𝑐𝑎𝑝 which is the maximum magnitude of growth rate allowed in a 229 

single time step. We then rescale the realized growth rate of every species to be in [-𝑔𝑐𝑎𝑝, 𝑔𝑐𝑎𝑝]. This rescaling 230 

lets us naturally define an adaptive time step that enables the model to simulate long times if differences in 231 
growth rates between species are large, while also allowing us to determine the fine-scale dynamics if the 232 
differences in growth rates is small (Coyte et al. 2015). More explicitly, our model can be described as follows: 233 
At each time step, we first compute the realized per-capita growth rate of species i, 𝑔𝑖, as 234 
 235 𝑔𝑖(𝑡) = 𝑟𝑖 + 𝐴𝑥𝑖(𝑡) − 𝑑𝑖𝑎𝑔(𝐴) 236 
 237 
  The −𝑑𝑖𝑎𝑔(𝐴) term simply serves to remove the effect of an individual on itself. We then find the maximum 238 
growth rate (in absolute value), 𝑔𝑚𝑎𝑥(𝑡) = max |𝑖 𝑔𝑖(𝑡)|,  and rescale the growth rate of each species as 239 

 240 𝑔𝑖′(𝑡) = 𝑔𝑖(𝑡)𝑔𝑚𝑎𝑥(𝑡) 𝑔𝑐𝑎𝑝 241 

 242 
We then advance time according to the formula 243 
 244 𝑡′ = 𝑡 + 1𝑔𝑚𝑎𝑥 245 

 246 
The population density of species i at time 𝑡′ is then given by 247 
 248 𝑥𝑖(𝑡′) = 𝑥𝑖(𝑡)𝑔𝑖′(𝑡) 249 
 250 
which is simply the right hand side of Eq. (1) after rescaling growth rates. This constitutes one ‘time step’ of 251 
the model. Thus, though the model runs for only 750 (or 1500) time steps, the true ‘in world’ time is 252 
considerably greater than 750 (or 1500), since time is rescaled dynamically at every step. The extent of the 253 
difference between time steps of the model and simulated time within the model is controlled both by the 254 
parameter 𝑔𝑐𝑎𝑝 and by the difference between the realized growth rates 𝑔𝑖 of the different species. 255 

 256 
At the end of the simulation, we store the number of extant species and the new pm, and pc values, computed 257 
only using the extant species. We vary pm from 0 to 1 (this automatically varies pc from 1 to 0) and s from 0.15 258 
to 1.65. Since our simulations are stochastic, we run 100 independent realizations of the simulation for any 259 
given combination of parameter values to obtain an estimate of expected (average) behavior. All parameters 260 
that are held constant for all simulations run in this paper are summarized in Table 1. All simulations were run 261 
in Python 3.6 on the PARAM-Brahma supercomputer of IISER Pune. Plots were made using either Python 262 
3.11.4 (packages numpy 1.24.2, pandas 1.5.3, matplotlib 3.7.1, and seaborn 0.12.2) or R 4.2.2 (packages dplyr 263 
1.1.1, rstatix 0.7.2, ggplot2 3.4.1, and ggpubgr 0.6.0). Statistical tests were run in R 4.2.2.  For effect size 264 
calculations, we used the wilcox_effsize function from the rstatix package. 265 
  266 
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Fixed Parameter Value 

Total time of simulation (T) 750 (1500 for two perturbations) 

Time of perturbation (tp) 5 

Proportion of each species killed in a perturbation 10% 

Side Length of lattice (controls total population size) 50 

Maximum allowed occupancy (% of lattice that can be occupied) 90% 

Interaction strength mean 0.25 

Interaction strength variance 0.01 

Maximum allowed growth rate in one time step (𝑔𝑐𝑎𝑝) 0.25 

 267 
Table 1: Parameters that were held constant across all simulation runs. The interaction strengths were 268 

drawn from a Gamma distribution with the specified mean and variance. 269 
 270 
 271 
Results 272 
 273 
To briefly recapitulate our modeling approach: we use an IBM to study the stability and dynamics of finite-274 
species communities after perturbations. We consider communities with 7 or 15 species interacting with every 275 
other species through mutualism or competition. Our model also includes self-inhibition or intra-specific 276 
competition, i.e., when members of each species compete with con-specifics. We initiate communities in 277 
equilibrium and simulate a perturbation, where a fraction of all community individuals is killed off randomly. 278 
We then study the stability and composition of the post-perturbation community. If the original community 279 
were stable, the species composition would remain unchanged after perturbation.  280 
 281 
Unstable communities do not usually lose all their species following a perturbation  282 
 283 
In our study, we perturb the communities in such a way that the strength of the perturbation in itself does not 284 
lead to species extinctions. Under such a scenario, the community does not lose its entire assemblage of species 285 
to extinctions but instead forms a smaller community with fewer species (Fig 2A). We also found that 286 
following a perturbation, more species-rich communities (Fig 2A. compare red and yellow curves) and 287 
communities with a greater fraction of mutualistic interactions (i.e., higher pm) (Fig 2A, 2B) tended to lose 288 
more species. However, community extinctions happened only when the fraction of mutualistic species was 289 
very high (Fig 2B). In line with previous studies, we found that increasing self-inhibition (intraspecific 290 
competition) promoted coexistence – all else being equal, communities with higher self-inhibition tended to 291 
retain a higher fraction of species following a perturbation (Fig 2B). Following these extinctions, the resultant 292 
community is stable, and a second perturbation did not lead to any major changes in the community 293 
composition. This is demonstrated by the fact that the number of species in the community following one 294 
perturbation was not significantly different from that of species following two perturbations (Fig 2C. Wilcoxon 295 
rank-sum text, W = 5193, p = 0.63). Broadly the same results hold for communities with exploitation (Figs S1, 296 
S2). To assess how the community composition changes after a fraction of the species is lost, we studied 297 
whether the proportion of interactions of each type in the post-perturbation community significantly differed 298 
from that of the original community. 299 

 300 
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 301 

Figure 2: Fraction of extant species left after perturbation. In all simulations, interaction strengths are drawn from a 302 
Gamma distribution such that the mean is 0.25 and the variance is 0.01. (A) For a given self-inhibition (here, s=1.05), 303 
the mean fraction of extant species reduces with increasing 𝑝𝑚 but takes non-zero values for most values of 𝑝𝑚. The 304 
fraction of extant species is higher for a smaller community (here, seven spp) compared to a larger community (here, 15 305 
spp). Each point is the mean of 100 realizations, and error bars represent 95% CIs. (B) Mean fraction of extant species 306 
(averaged over 100 realizations) increases with a higher self-inhibition across different values of 𝑝𝑚 for a community of 307 
15 species. (C) The number of species in an unstable community falls after one perturbation, but this does not change 308 
following subsequent perturbations. (Wilcoxon rank-sum test, W = 4892.5, p > 0.1). 309 

 310 
Selective Removal of Competitive Interactions 311 
 312 
If all species have equal probabilities of going extinct after a perturbation, then, on average, we expect the 313 
proportion of competitive (or mutualistic) interactions in our randomly assembled communities to remain 314 
unchanged by the end of the simulation. Our results reveal that this is not the case. The stable communities 315 
formed after species loss had a larger fraction of mutualistic interactions and a lower fraction of competitive 316 
interactions than the initial starting communities (Fig 3A). In other words, if some species go extinct in a 317 
community following a perturbation, the overall amount of competition in the community, measured in terms 318 
of the fraction of competitive interactions, tends to reduce. In communities without exploitation, this implies 319 
that despite mutualism having been associated with decreased stability in earlier studies, the fraction of 320 
surviving mutualistic interactions would be higher than in the original community prior to perturbation. Indeed, 321 
our results indicate that communities found after perturbation have a significantly higher fraction of mutualistic 322 
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interactions, as measured by a Wilcoxon rank-sum test (Fig 3A, W = 1737, p < 0.001), and effect size 323 
calculations indicate that this bias has a large effect (Wilcoxon effect size r = 0.564).  This broad result is valid 324 
for a large array of 𝑝𝑚 (Fig 3B, 3C) and self-inhibition (Fig 3C) values, suggesting that the result is robust to 325 
variation in initial community composition. Thus, even though ‘more mutualistic communities’ (i.e., 326 
communities with a greater fraction of mutualistic interactions between species) are less stable, perturbation-327 
driven-extinctions in these communities do not lead to communities with a lower proportion of mutualistic 328 
interactions. However, at high pm and high self-inhibition, the trend is reversed and, albeit for a small fraction 329 
of the parameter space, competitive interactions are lost less often than expected by chance alone (Fig 3C). 330 
Broadly the same results hold for communities with exploitation, except that it is exploitation that is lost less 331 
often than expected by chance alone, whereas both mutualism and competition may be lost either more often 332 
or less often than expected by chance alone (Figs S3-S7). Though competitive interactions may be lost either 333 
more or less often than expected by chance alone in communities with exploitation, the magnitude of the bias 334 
away from chance expectations is greater when competition is selectively lost (Fig S6). 335 
  336 
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 337 
 338 

 339 
 340 

Figure 3: The fate of mutualistic and competitive interactions after species loss. In all simulations, S=15 before 341 
perturbations. Interaction strengths are drawn from a Gamma distribution such that the mean is 0.25 and the variance is 342 
0.01. By plotting the difference between the observed and expected values of the number of interactions of each type, we 343 
can examine whether some interaction types tend to be preserved after extinction events. Here, the expected values are 344 
the values of the original community, while the observed values are those measured after equilibrium attainment following 345 
the induced perturbation. If this value is greater than 0, fewer interactions of that type are being lost than would be 346 
expected by chance alone, and if the value is less than 0, then more interactions are being lost than expected by chance 347 
alone. (A) The difference in the proportion of interactions before and after a perturbation is statistically significant, as 348 
tested by a Wilcoxon rank-sum test (W = 1737, p < 0.001, effect size r = 0.564). In this plot, s = 1.05. (B) For a fixed 349 
value of s (here, s = 1.05), regardless of the value of pm, on average, mutualistic interactions tend to be lost less often 350 
than expected by chance alone. In contrast, chance alone loses competitive interactions more often than expected. In this 351 
plot, the points represent the mean over 100 realizations, and error bars represent 95% CIs. (C) This qualitative result 352 
is valid for a large fraction of the parameter space, as indicated by heatmaps in which pm is varied along the y-axis and 353 
s is varied along the x-axis. In these plots, the color represents the mean difference (over 100 realizations) between the 354 
observed and expected number of interactions following a perturbation. Warmer / Redder colors indicate that the 355 
difference is greater than zero (more mutualists are retained), and cooler / bluer colors indicate that the difference is less 356 
than zero (i.e., more competitors are retained). For a large region of the parameter space, mutualism tends to be 357 
preferentially retained, whereas competition tends to be preferentially lost. 358 

 359 
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 360 
The greater loss of competitive interactions can be understood through the following reasoning. Given any two 361 
species 𝑖 and 𝑗, the net effect of species 𝑗 on the growth rate of species 𝑖 depends on both their interaction type 362 
and strength (𝛼𝑖𝑗) and on the population density of species 𝑗 (𝑁𝑗). Thus, for a given species 𝑖, if the magnitude 363 

of interspecific interaction strengths (|𝛼𝑖𝑗|) are approximately similar, the strongest interspecific effect will be 364 

from that species with the highest population density (𝑁𝑗). In other words, if interaction strengths are similar, 365 

the most significant interspecific effect on species i will be caused by the species j, which has the largest 366 
number of individuals. Immediately following a perturbation (i.e., random killing of a fraction of the 367 
individuals in the community), highly competitive species are likely to experience a larger growth rate, and 368 
species that are more mutualistic are likely to experience a lower growth rate. Mechanistically, the reduced 369 
growth rate of mutualists is because the benefit that a species gets from its mutualists is reduced following a 370 
perturbation due to reduced numbers of these mutualists. Thus, mutualistic species tend to drive themselves to 371 
ever-lower numbers through positive feedback loops (Coyte et al., 2015).  372 
 373 

 374 

Figure 4: Mechanism for the stability of communities induced by extinctions in unstable communities. (A) The 375 
trajectories of individual populations of each species for a single realization of the IBM with S = 15, pm = 0.5, s = 1.05 376 
are plotted. The species with the largest number of competitive interactions (the ‘alpha competitor’) is colored in black, 377 
species engaged in mutualisms with the alpha competitor are colored in red, and all other species are colored in grey. 378 
Following a perturbation, the alpha competitor quickly increases in numbers and ‘pulls along’ those species engaged in 379 
mutualisms while driving the others to extinction. (B) Statistical analysis of 100 independent realizations reveals that for 380 
this set of parameters (S = 15, pm = 0.5, s = 1.05) if the alpha competitor does not go extinct, the extinction probability 381 
of species that are engaged in mutualisms with the alpha competitor is significantly less than the background extinction 382 
probability of the community as a whole. (Wilcoxon rank-sum test, W = 6945.5, p < 0.0001, effect size r = 0.338). The 383 
center of the box plot denotes the median, and the edges of the box indicate the upper and lower quartile. 384 

 385 
 386 
Conversely, the first species to rise to a large population size will likely be those primarily engaged in 387 
competitive interactions (Fig 4A, black trajectory). However, even this species will likely have some (small 388 
number of) mutualistic interactions. Once a small number of such competitive species have risen to relatively 389 
large population sizes, they will then ‘pull up’ those species which are engaged in mutualistic interactions with 390 
them (Fig 4A, red trajectories) while ‘pushing down’ other competitors and driving them closer to extinction 391 
(Fig 4A, grey trajectories). Thus, species engaged in positive interactions with highly competitive species tend 392 
to go extinct less often than expected by chance alone (Fig 4B. Wilcoxon Rank-sum test, W = 6113.5, p < 393 
0.001), and effect size calculations indicate that the reduction in extinction rate is moderately large(Wilcoxon 394 
effect size r = 0.338). Since we study random, unstructured communities, species engaged in a higher number 395 
of mutualistic interactions are more likely to be engaged in mutualistic interactions with the top competitors. 396 
In contrast, species engaged in a higher number of competitive interactions are more likely to be engaged in 397 
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competitive interactions with the top competitors (probabilistically). Thus, species engaged in more mutualistic 398 
interactions are more likely to get a boost in growth rate due to being engaged in positive interactions with 399 
highly competitive species. On the other hand, more competitive species are likely to be engaged in 400 
competitive interactions with the top competitor and are thus pushed to extinction. This mechanism does not 401 
work if the proportion of mutualism is very high because all competitors, in this case, are likely supported by 402 
a large number of mutualistic interactions, which explains the trend reversal at high pm values. This explanation 403 
reveals that species engaged in a large number of exploitative interactions enjoy two distinct benefits following 404 
a perturbation --- species that are exploited by many species obtain a large increase in growth rate immediately 405 
following a perturbation due to release from exploitation/predation, whereas species that exploit a large number 406 
of species experience an increase in growth rate through a mechanism similar to that explained for mutualists 407 
above. Indeed, in communities with exploitative interactions, simulations reveal that the proportion of 408 
exploitative interactions always increases following a perturbation (Figs S4, S7). 409 
Our explanation of how competitive interactions are selectively removed while mutualistic interactions are 410 
maintained hinges on the assumption that the community is unstructured and can be modeled as a random 411 
matrix of interactions between species. Communities in nature, of course, may not necessarily satisfy these 412 
criteria. For example, there may be a community where the most competitive species do not engage in any 413 
mutualistic interactions. In such a community, even though some highly competitive species may see a sharp 414 
rise in population density following a perturbation, they may not pull up the numbers of species that participate 415 
in mutualistic interactions. Our analysis does not attempt to model such exceptional cases and is meant to 416 
interpret the results for typical random, unstructured communities. Strictly speaking, exceptional cases, such 417 
as those mentioned above, can arise despite a random assignment of interactions between species. However, 418 
the probability of such communities in our design is extremely low and therefore are unlikely to play a critical 419 
role in driving the general trends.  420 
 421 
 422 
Discussion 423 
 424 
 425 
Our results indicate that when a community is unstable (i.e., likely to lose species after a perturbation), only a 426 
subset of the species in the community goes extinct before the community becomes stable again (Fig 2C). 427 
Furthermore, species engaged in more mutualistic interactions are less likely to go extinct, suggesting that the 428 
extinction patterns in randomly assembled communities are non-random with respect to interaction type. The 429 
effects we uncover represent systematic biases in extinction probability that will consistently affect resultant 430 
community dynamics following any external perturbation that is strong enough to lead to species loss. These 431 
dynamics suggest a potential explanation for the prevalence of mutualism in natural communities (Kehe et al., 432 
2021; Machado et al., 2021) – a community can harbor reasonably high levels of mutualism if it is formed due 433 
to species loss from a larger randomly interacting community. Community assembly is often thought to occur 434 
by random dispersal followed by environmental filtering and subsequent exclusion of some species due to 435 
biotic interactions (Begon et al., 2006; Molles, 2015). This is precisely the kind of process for which our results 436 
would be relevant. Thus, our model highlights the importance of assembly processes in determining 437 
community structure.  438 
 439 
A recent modeling study of assembly processes in communities also suggests that when species sequentially 440 
invade a community, a balance of interaction types is vital for community stability, with higher fractions of 441 
mutualistic interactions corresponding to increased species persistence as well as increased stability of the 442 
community as a whole to external invasions (Qian and Akçay, 2020). Such so-called ‘ecological selection’ 443 
(Qian and Akçay, 2020)  for community structure during assembly has also been observed in dispersal models 444 
(Denk and Hallatschek, 2023) and eco-evolutionary community models (Nell et al., 2022). Our study 445 
highlights that ecological selection of this form can operate not only through a sequential assembly of 446 
communities but also through extinctions from initially assembled unstable communities. In nature, a situation 447 
mirroring our model is often encountered in communities such as microbiomes, where empirical data suggests 448 
that many species are randomly assembled through dispersal processes and environmental filtering (Sieber et 449 
al., 2019; Venkataraman et al., 2015). Empirical studies of microbial communities also suggest that positive 450 
interactions, in the sense of exploitations as well as mutualisms, are ubiquitous in culturable bacteria (Kehe et 451 
al., 2021) (but see (Palmer and Foster, 2022)). Our study provides a mechanistic hypothesis for reconciliation 452 
of such empirical results with theory regarding the destabilizing effects of mutualism (Allesina and Tang, 453 
2012; Coyte et al., 2015).   454 
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 455 
Our model also predicts an emergent non-random interaction structure from an initially unstructured, unstable 456 
community. Since competitive interactions with the top competitor are selectively lost, the stable community 457 
so formed is likely to have a small number of ‘central’ species (previously the ‘top competitors’) engaged in 458 
positive interactions with most community members. Competitive interactions with this ‘central’ species 459 
should be relatively weak. This aligns with a previous analytical study, which predicts that assembly processes 460 
should lead to ecological networks with weaker competition and stronger mutualism than the original species 461 
pool (Bunin, 2016). A similar phenomenon has also been observed in an analytical model of unstructured 462 
communities with higher-order interactions (Gibbs et al., 2022). In this study, the authors found that when 463 
interaction strengths in their model were low, the dominant species in communities with higher-order 464 
interactions tended to be those engaged in positive interactions with each other and engaged in negative 465 
interactions with species that have lower species density. By studying the dynamics of unstable communities, 466 
our results underscore the need to go beyond the question of whether communities are stable: to study the fate 467 
of unstable communities. While such studies are often complex to conduct analytically, computational 468 
methods, laboratory experiments, and long-term field observations provide potential avenues to address this 469 
vital question.  470 
 471 
Though we have only looked at randomly assembled communities, a previous simulation study (García-472 
Callejas et al., 2018) suggests similar results may hold for structured trophic networks. These authors found 473 
that positive interactions such as mutualism and commensalism promoted persistence in trophic networks with 474 
low species richness. However, this effect was less pronounced at higher species richness. Our study neglects 475 
environmental or spatial heterogeneity, which is known to affect coexistence and stability (Allen et al., 2013; 476 
Durrett and Levin, 1994; Gordon et al., 2015; Hauert and Doebeli, 2021; Krakauer and Pagel, 1995; Stein et 477 
al., 2014; Ursell, 2021; Yu et al., 2001). Another factor that can potentially affect community stability is 478 
demographic stochasticity, which has been shown to promote mutualism/cooperation in many model systems 479 
(Chotibut and Nelson, 2015; Constable et al., 2016; Houchmandzadeh, 2015; Houchmandzadeh and Vallade, 480 
2012; McLeod and Day, 2019). By neglecting these factors, we do not mean to imply that they are unimportant. 481 
Instead, we illustrate that they cannot solely be responsible for explaining the occurrence of mutualism since, 482 
as we have shown, mutualism may persist purely through non-random extinction processes during initial 483 
community assembly.  484 
 485 
Our model also assumes that all direct community interactions are pairwise and allows higher-order 486 
interactions to only manifest as emergent properties of the simulation. Analytical studies suggest that many 487 
classic results from pairwise interaction models carry over to models with higher-order interactions (Gibbs et 488 
al., 2022). In particular, May’s classic results on the diversity-stability relation carry over to models with 489 
higher-order interactions (Gibbs et al., 2022). Therefore, there is a possibility that such models may lead to 490 
results analogous to those presented in this study. A recent paper has argued on analytic grounds that mutualism 491 
is not destabilizing in Lotka-Volterra communities if studies use the so-called ‘community matrix’, which 492 
differs from the more commonly used ‘interaction matrix’ by accounting for species densities (Stone, 2020). 493 
Our explanation for the non-random loss of competitive interactions from an unstable community following a 494 
perturbation also crucially relies on the observation that species densities play a large role in determining 495 
community dynamics. However, in contrast to the analytical study, our model predicts a decrease in stability 496 
with an increase in mutualism, but nevertheless, provides a potential explanation for the prevalence of 497 
mutualistic interactions in nature, namely ‘ecological selection’. 498 
 499 
Lastly, our simulations are over ecological timescales and do not allow for evolution via speciation or evolution 500 
in traits (interaction strengths and/or intrinsic growth rates). Incorporating evolution is known to qualitatively 501 
alter the predictions of purely ecological models (Kokko et al., 2017; Schoener, 2011; Yamamichi et al., 2022). 502 
A suite of empirical studies increasingly indicates that the separation of timescales between ecology and 503 
evolution can often be blurred, especially in the case of organisms such as microbes (Schoener, 2011). 504 
Including evolutionary processes in ecological coexistence theory and the mutualism-competition debate thus 505 
provides an attractive avenue for future studies. 506 
 507 

 508 

 509 

 510 

 511 
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This document contains supplementary figures for the study ‘Mutualism destabilizes 

communities, but competition pays the price’. The main text contains the results of simulations 
in which pe = 0 (i.e. all interspecific interactions are either mutualistic or competitive). In this 

supplementary file, we present the corresponding plots for communities in which exploitation 

is present in equal proportion as competition (i.e. pc = pe). As in the main text, all means are 

over 100 independent realizations, and in plots with varying pm, pm is varied from 0 to 1. 
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Fig S1: Proportion of extant species as a function of amount of mutualism (pm) and 

intraspecific competition (s). Compare with Fig 2B in the main text. 
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Fig S2: Proportion of extant species following one perturbation and two perturbations for 

communities in which pc = pe.  Following a perturbation, communities experienced 

significant species loss (Wilcoxon rank sum test, W=9700, p < 0.0001). However, the number 

of species left extant in the community following a single perturbation was not significantly 

different from that after two perturbations (Wilcoxon rank sum test, W = 5559.5, p = 0.17).  

Compare with Fig 2C in the main text. Legend is same as for Fig 2C. 
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Fig S3: Proportion of mutualistic before and after perturbation for communities in which pc 

= pe. In this case, pm slightly decreases (Wilcoxon rank sum test, W = 6594.5, p < 0.0001). 

However, the effect is small (Wilcoxon effect size r = 0.276) and is not a general trend, as 

will be revealed upon examining the full parameter space in Figs S5-S7. Here, s = 1.05. 

Compare with Fig 3A in the main text. Legend is same as for Fig 3A. 
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Fig S4: The difference between observed and expected number of interactions of each type 

for communities in which pc = pe. In this case, the dynamics are more complicated than those 

of communities with no exploitation. Broadly, exploitation is always lost less than expected 

by chance alone, whereas both mutualism and competition may be lost either more often or 

less often than expected by chance alone, though in opposite regions of parameter space. In 

this plot, the intraspecific competition strength is s = 1.05. Error bars represent standard 

errors, and points are mean values. Compare with Fig 3B in the main  
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Fig S5: Observed vs expected number of mutualistic interactions following a perturbation. In 

communities with exploitation, there is also a significant range of parameter space in which 

mutualism is lost more often than expected by chance alone. However, the effects are 

generally rather weak (compare limits of color bar with those of Fig 3C in the main text). 

Legend is same as in Fig 3C. 
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Fig S6: Observed vs expected number of competitive interactions following a perturbation. 

Competition may be lost less often or more often than expected by chance alone. However, 

the gain in competition is weaker in effect than the loss (compare red limit vs blue limit in 

color bar). Legend is same as in Fig 3C. 
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Fig S7: Observed vs expected number of exploitative interactions following a perturbation. 

Exploitative interactions are always lost less often than expected by chance alone. Legend is 

same as in Fig 3C. 
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