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Abstract

Several recent theoretical studies have shown that noise can have strong impacts on evolu-
tionary dynamics in the limit of small population sizes. In this thesis, I analytically describe
the evolutionary dynamics of finite fluctuating populations from first principles to capture
the fundamental phenomena underlying such noise-induced effects. Starting from a density-
dependent ‘birth-death process’ describing a population of individuals with discrete traits,
I derive stochastic differential equations (SDEs) for how the relative population sizes and
trait frequencies change over time. These SDEs generically reveal a directional evolutionary
force, ‘noise-induced selection’, that is particular to finite, fluctuating populations and is
present even when all types have the same fitness. The strength of noise-induced selection
depends directly on the difference in turnover rates between types and inversely on the total
population size. Noise-induced selection can reverse the direction of evolution predicted by
infinite-population frameworks. This general derivation of evolutionary dynamics helps unify
and organize several previous studies – typically performed for specific evolutionary and
ecological contexts – under a single set of equations. My SDEs also recover well-known results
such as the replicator-mutator equation, the Price equation, and Fisher’s fundamental theorem
in the infinite population limit, illustrating consistency with known formal descriptions of
evolution. Finally, I extend the birth-death formalism to one-dimensional quantitative traits
through a ‘stochastic field theory’ that yields equations such as Kimura’s continuum-of-alleles
and Lande’s gradient dynamics in the infinite population limit and provides an alternative
approach to modelling the evolution of quantitative traits that is more accessible than current
measure-theoretic approaches.
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Motivation & Outline





Chapter 1

Introduction

The theory of evolution by natural se-
lection is an ecological theory—founded
on ecological observation by perhaps the
greatest of all ecologists. It has been
adopted by and brought up by the sci-
ence of genetics, and ecologists, being
modest people, are apt to forget their
distinguished parenthood

John Harper (1967)

Idealization and generalization are part and parcel of science, be it theorists making
unrealistic assumptions on paper to model specific phenomena or experimentalists creating
artificially controlled conditions in the laboratory to test specific hypotheses (Zuk and
Travisano, 2018). Indeed, some philosophers of science argue that “the epistemic goal of
science is not truth, but understanding” (Potochnik, 2018), an idea generally echoed by
practicing scientists (Levins, 1966; Servedio et al., 2014; Zuk and Travisano, 2018; Grainger
et al., 2022). In other words, since the world is complicated and humans are limited, general
understanding inevitably comes at the cost of other desirable qualities such as the ability to
make precise quantitative predictions. This is especially true for complex phenomena such as
those that are the domain of ecology and evolution, where we are often not even aware of all
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4 Eco-evolutionary dynamics of finite populations from first principles

the factors that are at play or how they interact. We thus benefit from formulating simple
‘general’ models that provide simple qualitative predictions and help us think about the
phenomena we study in a cohesive, unified framework that we can understand well (Potochnik,
2018; Luque and Baravalle, 2021).

A general approach need not (and often will not) be perfect or all-encompassing. As
Robert MacArthur once remarked, “general events are only seen by ecologists with rather
blurred vision. The very sharp-sighted always find discrepancies and are able to see that
there is no generality, only a spectrum of special cases” (Kingsland, 1985). MacArthur was
speaking primarily about biological generalities and special cases, but in a related vein, if our
language of choice for expressing our general events is mathematics, making any non-trivial
observations in complex fields such as ecology and evolution often requires mathematical
‘coarse-graining that ignores or ‘lumps together’ several ‘low-level’ model-specific details
in favor of a more general description at a ‘higher’ level achieved in some limit that only
contains a small number of ‘model-independent’ quantities, often derived from first principles.
Formulating and studying such general frameworks can be greatly beneficial as an aid to
thinking, sometimes precisely because ‘blurry eyed’ thinking that begins from a small set of
fundamental first principles and only looks for general broad-brush regularities can be much
more insightful than accounting for every little detail or special case. The success of such
an approach is perhaps best illustrated by the success of statistical mechanics in physics -
statistical mechanics was essentially born from the idea that various useful statements about
systems with many moving parts can be made without the need for knowing the excruciating
details of every single moving part, and indeed, starting from first principles, this sort of
explicitly ‘blurry-eyed’ thinking that only looked at approximate properties was shown to be
able to recover the phenomenological laws of thermodynamics as statistical laws.

1.1 A (very, very) brief sketch of high-level modelling

frameworks in population biology

In biology, arguably the greatest example of a general organizing framework is the idea of
evolution by natural selection as synthesized by Darwin from myriad detailed observations of
particular systems. Theoretical population genetics has also had a long-standing tradition in
building general organizing frameworks that ‘abstract away’ some biological specificities in
favor of a small number of ‘fundamental’ notions like selection and mutation which act on a
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small number of ‘fundamental’ quantities like fitness. The description of evolution in these
general terms was first laid out in formal mathematical terms during the Modern Synthesis
by authors such as Wright, Fisher, and Haldane, an extremely successful venture that unified
two major schools of thought — Mendelian genetics and Darwinian evolution — that were,
at the time, considered to be incompatible (Provine, 2001). It is currently thought that this
unification would have been unlikely or would have taken much longer if the architects of the
Modern Synthesis had stuck to verbal arguments instead of working with formal models in
explicitly mathematical terms (Thompson, 2014).

The success of the Modern Synthesis illustrates the value of formulating abstract math-
ematical models that only provide a ‘high-level’ description of the fundamental processes
required to capture the essence of biological evolution (Provine, 2001; Thompson, 2014).
However, the evolutionary play that architects of the Modern Synthesis studied famously
unfolds in the ecological theatre (Hutchinson, 1965). Thus, quantities like fitness are not
truly fundamental but instead emerge as the net result of various ecological interactions,
tradeoffs, and constraints (Metz et al., 1992), a fact that can have important consequences
for evolution (Coulson et al., 2006; Schoener, 2011; Kokko et al., 2017). Trying to understand
such ‘eco-evolutionary feedbacks’ or ‘eco-evolutionary dynamics’ has sprouted a rich body of
literature under the broad heading of ‘evolutionary ecology’ that has greatly enriched our
understanding of biological populations (Coulson et al., 2006; Metcalf and Pavard, 2007a;
Schoener, 2011; Brown, 2016; Kokko et al., 2017; Lion, 2018; Govaert et al., 2019; Svensson,
2019; Hendry, 2019). Several major theoretical frameworks in the slightly more general setting
of eco-evolutionary dynamics — such as evolutionary game theory and adaptive dynamics —
as well as the standard equations of population genetics and quantitative genetics, can still
be recovered (in a very general sense) as special cases of a slightly reformulated version of
something called the ‘Price equation’ (Page and Nowak, 2002; Lion, 2018).

Formulated in the mid to late 20th Century, the Price equation is the most general standard
mathematical framework we have for evolutionary population biology (Frank, 2012; Frank,
2017; Queller, 2017; Luque, 2017; Lion, 2018; Lehtonen, 2018; Lehtonen, 2020; Luque and
Baravalle, 2021). Indeed, much like statistical mechanics in physics, the Price equation is
derived from a small number of very general first principles and is able to recover several
standard equations as special cases. The Price equation partitions changes in population
composition into multiple terms, each of which lends itself to a straightforward interpretation
in terms of ‘high-level’ evolutionary forces such as selection and mutation, thus providing a
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useful conceptual framework for thinking about how populations change over time (Frank,
2012). However, the greater complexity of ecology and evolution relative to physics has meant
that the generality of the Price equation comes with a much bigger cost in predictive power.
The Price equation in its most general formulation is dynamically insufficient1 (Van Veelen,
2005; Frank, 2012; Simon, 2014; Queller, 2017). However, this need not be the case if we are
willing to compromise slightly - several authors have put forth more predictive versions of the
Price equation by moving to a continuous time differential equation framework in which the
Price equation is dynamically sufficient but manifests in a slightly less general form (Page
and Nowak, 2002; Lion, 2018; Day et al., 2020).

These general formulations are still often very difficult to coax concrete quantitative
predictions from, but they do lend themselves to simple biological interpretation, and
in the dynamically sufficient formulations, often provide qualitative predictions. These
qualitative predictions, as well as the decomposition of terms in the original Price equation,
are useful primarily for their generality — the Price equation gives us a clear idea of
which evolutionary forces operate in which systems and when in an almost entirely ‘model-
independent’ language (Okasha, 2006; Frank, 2012; Queller, 2017; Luque, 2017). It also
leads to a small number of simple yet insightful ‘fundamental theorems’ of population
biology (Queller, 2017; Lion, 2018; Lehtonen, 2018) that serve a similar function, and unifies
several various seemingly disjoint formal structures of evolution under a single theoretical
banner (Lehtonen, 2020; Luque and Baravalle, 2021).

One of the general guiding principles of much of this mathematization has been the
assumption that incorporating the reality of finite population sizes into models leads to no
major qualitative differences in behavior, only ‘adding noise’ or ‘blurring out’ the predictions
of simpler infinite population models (Page and Nowak, 2002). Consequently, several major
theoretical frameworks in the field, such as adaptive dynamics, are explicitly formulated
in deterministic terms at the infinite population size limit. However, this assumption is

1Since this is not very standard nomenclature outside theoretical biology and related fields: ‘Dynamically
insufficient’ means that the equation relates quantities through time in a manner that cannot be presented in
the form of a difference equation xt+1 = F (xt) or a differential equation ẋ = F (x). Thus, we cannot predict
a dynamic ‘trajectory’ given an initial condition x0. The term ‘insufficient’ is to indicate that the equation is
only true ‘in retrospect’, requiring complete information about the system at all times. It is thus ‘insufficient’
for prediction. In our case, in its most general setting, the Price equation is usually formulated in a way that
partitions a given amount of phenotypic change between two populations (usually, but not necessarily, the
same population at two different times) into change due to selection, transmission bias, etc., rather than
predicting a trajectory for how much phenotypic change will occur at various future times based on the
current phenotypic distribution.
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largely unjustified, and since populations in the real world are finite and stochastic, checking
whether stochastic models differ from their deterministic analogs is vital to furthering our
understanding of the fundamentals of population biology (Hastings, 2004; Coulson et al.,
2004; Shoemaker et al., 2020). Today, we increasingly recognize that incorporating the finite
and stochastic nature of the real world routinely has much stronger consequences than simply
‘adding noise’ to deterministic expectations (Boettiger, 2018), with important consequences for
both ecological (Schreiber et al., 2022) and evolutionary (DeLong and Cressler, 2023) theory.
In ecology and evolution, stochastic models need not exhibit phenomena predicted by their
deterministic analogues (Proulx and Day, 2005; Johansson and Ripa, 2006; Claessen et al.,
2007; Wakano and Iwasa, 2013; Débarre and Otto, 2016; B. Johnson et al., 2021). In addition,
they exhibit novel phenomena not predicted by the deterministic approximations (Rogers
et al., 2012a; Rogers et al., 2012b; Rogers and McKane, 2015; Veller et al., 2017; DeLong and
Cressler, 2023).

A striking example of such novel phenomena is given by the complete ‘reversal’ of the
predictions of deterministic models that are seen in many finite-population evolutionary
models (Houchmandzadeh and Vallade, 2012; Houchmandzadeh, 2015; Constable et al., 2016;
McLeod and Day, 2019). These latter models work with two competing types of individuals (in
various model-specific contexts, ex: cheaters and cooperators in evolutionary games), and find
in their specific models that while deterministic models in the infinite-population limit predict
one particular type being superior due to natural selection, the stochastic finite-population
models evolve in the exact opposite direction, with the type that is classically ‘disfavored’ in
the infinite-population limit having a higher fixation probability. This phenomenon of selection
for the classically disfavored type that leads to the ‘reversal’ of the prediction of deterministic
natural selection has been dubbed ‘noise-induced selection’ (Constable et al., 2016; McLeod
and Day, 2019; Week et al., 2021), and has been seen in several particular models in fields
as diverse as epidemiology (Kogan et al., 2014; Humplik et al., 2014; Parsons et al., 2018;
Day et al., 2020), cell-cycle dynamics (Wodarz et al., 2017), life-history evolution (Gillespie,
1974; Veller et al., 2017; Kuosmanen et al., 2022), and social evolution (Houchmandzadeh
and Vallade, 2012; Houchmandzadeh, 2015; Chotibut and Nelson, 2015; Constable et al.,
2016; McLeod and Day, 2019; Wang et al., 2023). However, despite these suggestions
that stochastic finite-population effects can have profound consequences in a wide variety of
biological systems, as yet, no general model-independent description of noise-induced selection
analogous to the Price equation as a description for classical selection and transmission bias
exists in the literature.
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Studies of neutral or near-neutral dynamics in population and quantitative genetics usually
do take stochasticity seriously, explicitly modeling finite populations that follow stochastic
dynamics. Unfortunately, the classic or standard stochastic models in both population
genetics (Fisher, 1930; S. Wright, 1931; Moran, 1958; Kimura, 1964) and quantitative ge-
netics (Crow and Kimura, 1970; Lande, 1976) typically assume a fixed total population size,
thus restricting their validity in a world where population sizes routinely fluctuate (Lambert,
2010). This is unfortunate, since empirical studies indicate that populations with fluctuating
population size can exhibit evolutionary dynamics that are starkly different from the predic-
tions of constant population models (Sanchez and Gore, 2013; Chavhan et al., 2019; Chavhan
et al., 2021). Theoretical studies concerned with evolution in populations of non-constant
size usually impose deterministic and typically phenomenological rules for how the total
population size must vary (Kimura and Ohta, 1974; Ewens, 1967; Otto and Whitlock, 1997;
Engen et al., 2009; Waxman, 2011). These rules further usually do not depend on population
composition. Such models are thus somewhat artificial since demography and population
size are forced to be independent quantities even though this is obviously not the case in
natural populations, where population size is a ‘bulk’ property whose value emerges from an
intricate interplay of the individual-level demographic processes of birth and death (Metcalf
and Pavard, 2007a; Lambert, 2010; Geritz and Kisdi, 2012; Doebeli et al., 2017). Notably, the
most general framework we have, the Price equation, is typically formulated in a deterministic
setting (Page and Nowak, 2002; Frank, 2012; Queller, 2017; Lion, 2018; Day et al., 2020)
that ignores stochasticity (but see Rice (2008) and Rice (2020) for a discrete time formulation
that is stochastic but, as far as I can tell, is dynamically insufficient, just like the original
formulation of the Price equation). Since real-life populations are stochastic, finite, and
of non-constant population size, this is somewhat of a problem, since we know that such
deterministic approximations that may not capture important dynamics of the real systems
of interest.

Incorporating stochasticity into deterministic systems is a tricky business, and, if done
in a phenomenological manner by adding noise to a ‘deterministic skeleton’ (Coulson et al.,
2004) in an ad-hoc fashion, can very easily result in models that are ill-behaved. For example,
such models may predict negative population sizes, or lead to biologically unreasonable
predictions such as ‘extinction time paradoxes’ where, for instance, a strong Allee effect can
actually appear to increase time to extinction even when a population begins below the Allee
threshold, a clearly unreasonable prediction that vanishes if noise is derived properly from
first principles (Black and McKane, 2012; Strang et al., 2019). Further, this procedure of
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adding noise in an ad-hoc manner provides no insight into the mechanistic factors actually
responsible for the stochasticity in the first place. Stochastic individual-based models, in
which (probabilistic) rules are specified at the level of the individual and population level
dynamics are systematically derived from first principles, are self-consistent, much more
natural, and can fundamentally differ from the predictions made by simply adding noise terms
to a deterministic model (Black and McKane, 2012; Strang et al., 2019). Formulating the
fundamental formal structures of evolutionary biology in terms of the mechanistic demographic
processes of birth and death at the individual level is also greatly desirable for biological
reasons (Metcalf and Pavard, 2007a; Geritz and Kisdi, 2012) because ‘all paths to fitness
lead through demography’ (Metcalf and Pavard, 2007b). In other words, since demographic
processes such as birth and death rates explicitly account for the ecology of the system,
they can more accurately reflect the complex interplay between ecological and evolutionary
processes and provide a more fundamental mechanistic description of the relevant evolutionary
forces and population dynamics (Doebeli et al., 2017). In this thesis, I present a formulation
of population dynamics constructed from mechanistic first principles grounded in individual-
level birth and death. The mathematical formalism itself is very general and applies equally
to the ‘high level’ forces of population genetics and the ‘high level’ forces of community
ecology as postulated by Vellend (2016), though I will mostly stick to the population genetics
interpretation in my discussions.

1.2 A very brief outline of the rest of this thesis

This section provides a bullet-point chapter-wise outline for convenience. A more detailed
outline of the thesis, with explanations of the technical content covered, originality, etc., is
provided in the next section.

This thesis develops a mathematical formalism for describing finite fluctuating populations
from first principles and is structured as follows. The rest of this thesis is divided into two
parts. Part II provides the complete formalism in all its gory mathematical detail, but in
a (hopefully) accessible pedagogical style. Part III then presents some major results from
part II and discusses their implications and connections with previous studies. Appendix D
presents some concrete examples of models for clarity regarding the major ideas.

• Chapter 2 provides the necessary mathematical background and provides a toy example
studying the size of a population of identical individuals that illustrates the major ideas
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used. If I am required to shoehorn this thesis into a ‘intro-methods-results-discussion’
format, then chapter 2 can be thought of as providing a mathematical ‘introduction’
and illustration of the ‘methods’ that will be used (in chapter 3) and generalized (in
chapter 4) in a biological context to get ‘results’.

• Chapter 3 develops a formalism for describing the evolution of finite fluctuating popula-
tions of individuals that come in arbitrarily many ‘types’ that vary in arbitrarily many
discrete characters. This yields equations that generalize the classic Price equation and
replicator-mutator equation to finite fluctuating populations.

• Chapter 4 extends the ideas developed in chapter 3 to populations that vary in a single
one-dimensional quantitative character and derives a so-called ‘stochastic field theory’
that describes evolution in such populations. This also results in some mathematical
equations that may be of independent interest to physicists and applied mathematicians.

• Chapter 5 provides a technical summary of the major results by presenting three
important stochastic differential equations. These are equations for type frequencies,
the population mean value of an arbitrary type-level quantity, and the population
variance of an arbitrary type-level quantity, and respectively generalize the replicator-
mutator equation, the Price equation, and Lion’s (2018) variance equation to finite,
stochastically fluctuating populations. These equations predict a directional evolutionary
force called ‘noise-induced selection’ that is only seen in finite, fluctuating populations.
Some implications for social evolution and community ecology are discussed. I also
briefly discuss the field equation formalism I develop in chapter 4. Readers who are
comfortable with equations but don’t want to go through the details and intermediate
steps of the formalism itself can skip to this chapter.

• Chapter 6 provides a quick summary of the major results and discusses biological
implications, connections with previous studies, and opportunities for future work.
This chapter has no equations (!). Thus, readers who do not like explicitly seeing
mathematics in their biology may skip all other chapters and directly read chapter 6 if
they are interested only in the final results and takeaways.
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1.3 A more expanded outline of the rest of this thesis

Chapter 2 provides the basic mathematical background required and illustrates the
major ideas that we will use. To facilitate readership by a broad audience, I only assume
passing familiarity with calculus (derivatives, integrals, Taylor expansions) and probability.
Familiarity with stochastic calculus is helpful for some sections but is not required, and I
present a brief introduction to the relevant notions from both Markov theory and stochastic
calculus in section 2.1. In section 2.2, I present a toy example of tracking population size of
a population of identical individuals in section. I introduce a description of the system via
a ‘master equation’, and then conduct a ‘system-size expansion’ to obtain a Fokker-Planck
equation for the system, thus illustrating all the major tools required. For completeness,
I also conduct a weak noise approximation to arrive at a so-called ‘linear’ Fokker-Planck
equation that can be solved exactly to arrive at a closed-form solution.

Chapter 3 deals with the evolution of discrete traits. In this case, the system is finite-
dimensional, since we can completely specify the state of the system by simply listing out the
number of individuals of each type in a vector. I introduce a general multivariate process
to describe the evolution of discretely varying traits, and use the system size expansion
to arrive at a continuous description of change in trait frequencies as an SDE under mild
assumptions on the functional forms of the birth and death rates. Unlike many classic
stochastic formulations in evolutionary theory (Fisher, 1930; S. Wright, 1931; Moran, 1958;
Crow and Kimura, 1970; Lande, 1976; Kimura and Ohta, 1974), I do not assume a fixed
(effective) population size and instead allow the total population size to be a natural emergent
property from the demographic processes of birth and death. I show that the deterministic
limit of this process is the well-known replicator-mutator equation (or equivalently, the
dynamic version of the Price equation), thus establishing the microscopic basis of well-known
equations from stochastic first principles. I also illustrate some general predictions that can
be made using the weak noise approximation for the sake of completeness.

While the mathematics of chapter 3 is standard and well-understood, it has, to the best
of my knowledge, not been applied before in the generality and context we use here. Several
specific models of specific systems do use these mathematical techniques, but these papers
are often written assuming familiarity with notions in physics and/or mathematics and thus
may not be very accessible to theoretical ecologists who do not have formal training in
these subjects (but see Czuppon and Traulsen (2021) for a recent pedagogical review on the
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general approach applied to Wright-Fisher and Moran processes, where total population size is
constant). As such, chapters 2 and 3 together also serve as a tutorial and technical introduction
to some theoretical ideas: For ecologists, the chapter introduces ‘system size expansions’ and
illustrates their use in a general setting, and can be seen as a tutorial on modelling finite
populations analytically with minimal assumptions; For population geneticists, the chapter
illustrates how system-size approximations (‘diffusion approximations’ in the population
genetics literature) can be carried out without assuming a constant (effective) population size
and how this generalization has important consequences for the evolutionary forces at play;
For physicists and applied mathematicians, the chapter presents a study of the consequences
of applying the system-size expansion to the kind of density-dependent birth-death processes
that are widely applicable in ecology and evolution - unlike many physical systems, though
demographic processes like birth and death over ecological timescales are usually formulated
in terms of population numbers or densities, predictions in evolution are typically in terms of
frequencies of types, and this fact has subtle consequences that can be overlooked if one only
works with densities.

Chapter 4 introduces a function-valued process to model the evolution of quantitative
traits such as body size, which can take on uncountably many values. This function-valued
process can then also be analyzed via an analog of the system-size approximation to arrive at a
‘functional’ Fokker-Planck equation in which derivatives are replaced by functional derivatives.
I show that classic equations from quantitative genetics such as Kimura’s cotinuum-of-alleles
model (Kimura, 1965) and Lande’s gradient dynamics (Lande, 1982) can be derived as the
infinite population limit of this stochastic process. I also conduct a weak noise approximation
to arrive at a linear functional Fokker-Planck equation that can be analyzed for specific
systems as required. Unlike the systems studied in Chapter 3, formalizing the study of the
kind of processes we study in Chapter 4 is an active area of mathematical research (Carmona
and Rozovskĭı, 1999; Da Prato and Zabczyk, 2014; Prévôt and Röckner, 2007; Liu and
Röckner, 2015; Bogachev et al., 2015; Balan, 2018) and the mathematics itself is far from
settled.

Chapter 4 generalizes the work of Tim Rogers and colleagues (Rogers et al., 2012a; Rogers
et al., 2012b; Rogers and McKane, 2015) to a wide class of eco-evolutionary systems, and to
the best of my knowledge, has never been presented in full generality before. Mathematically,
chapter 4 presents heuristic, accessible alternatives to the rigorous tools of martingale theory
and measure-valued branching processes that are usually employed to describe the evolution
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of quantitative traits (Champagnat et al., 2006; Etheridge, 2011; Week et al., 2021) by
generalizing the idea of a system size expansion of density-dependent (finite-dimensional) birth-
death processes to the infinite-dimensional case using the notion of functional differentiation.
Biologically, Chapter 4 provides ‘stochastic field equations’ that describe the dynamics of
one-dimensional quantitative traits in finite populations and illustrates that these equations
are consistent with well-known formalisms in quantitative genetics at the infinite population
limit.

Part III summarizes the major results of the formalism developed in Part II and presents
some simple equations that can be argued to be ‘fundamental equations’ of population
biology in the sense of Queller (2017), and together form a ‘unifying perspective’ in the sense
of Lion (2018). These equations reduce to well-known results such as the Price equation,
the replicator-mutator equation from evolutionary game theory, and Fisher’s fundamental
theorem from population genetics in the infinite population limit. For finite populations,
these same equations predict a new evolutionary force, ‘noise-induced selection’, that has
still not found its way into the standard formal canon of evolutionary biology and whose
significance is only recently being recognized (Constable et al., 2016; McLeod and Day, 2019;
Mazzolini and Grilli, 2022; Kuosmanen et al., 2022). Implications of noise-induced selection
are also discussed in part III. Readers who are okay with mathematical equations but do
not want any intermediate derivations (or just trust my math) can skip to Chapter 5 for
the major equations that emerge as being important, though I strongly encourage working
through the entire formalism properly if possible. Readers who are averse to or do not care
for equations can safely skip to Chapter 6 directly for the major takeaways of this thesis.



14 Eco-evolutionary dynamics of finite populations from first principles



Part II

Theory





Chapter 2

Mathematical background and an exposi-
tory example

Like most mathematicians, he takes the
hopeful biologist to the edge of a pond,
points out that a good swim will help
his work, and then pushes him in and
leaves him to drown.

Charles Elton (1935), speaking about
Lotka

Theorists are often accused of presenting somewhat intuitive ideas in a highly inaccessible
formalism that discourages those unfamiliar with the required mathematics. Indeed, many
models that use the kind of stochastic processes I use in this thesis assume familiarity with
stochastic calculus or Markov theory, or at the very least a willingness to ‘fill in the blanks’
between major results of the calculations. In an attempt to make the ideas I use more
accessible to a broader audience, I will use this expository chapter to present a pedagogical
summary of the basic mathematical tools required, and present a toy model tracking the
population size of a population of identical individuals as an example of the major ideas used.

17
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2.1 Mathematical Background

Here, I provide a brief, informal introduction to some basic notions in stochastic processes.
I will make no attempt at rigor and will actively avoid jargon like ‘martingale’ and ‘filtration’.
Readers looking for a more comprehensive introduction can refer to standard mathematics
texts such as Øksendal (1998), Ethier and Kurtz (1986), or Karatzas and Shreve (1998) for a
rigorous treatment of the mathematical foundations, or physics-style texts such as Gardiner
(2009) or Van Kampen (1981) for useful tools and techniques to study real systems.

2.1.1 Birth-death processes

Mathematically, a birth-death process is a stochastic process unfolding in continuous time
such that

• The process is ‘Markov’, meaning that the future is statistically independent of the past
given the present. In more mathematical terms, if the value of the stochastic process at
time t is given by Xt, P(·|E) denotes probability conditioned on E, and u < s ≤ t are
any three times, then

P(Xt|Xs, Xu) = P(Xt|Xs)

This equation is simply saying that if we have the information about the state of a
process at time s, then we do not gain any more predictive power about the process at
a future time t if we have additional knowledge about the process from some past time
u < s. A series of tosses of a fair coin is a simple example of a Markov process, since
knowing whether a coin landed on heads during a previous toss does not change your
predictive power about whether the coin will land on heads the next time you toss it.

• Transitions are in units of one individual. In one dimension, the phrase ‘birth-death
process’ is usually reserved for processes that take values in the non-negative integers
{0, 1, 2, 3, 4, . . .} such that the only direct transitions are from n to n± 1. Biologically,
this is saying that we observe the population on a fine enough timescale that the
probability of two or more births/deaths occurring at the exact same time is very low
and we can disallow it entirely in our models. The conditions for higher dimensional
birth-death processes look similar.

Since these processes unfold in continuous time, they are characterized not by transition
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probabilities but by transition rates, which can be thought of as the probability of transition
‘per unit time’. The quantity of interest is usually the probability of being in a particular
state at a given point in time. The entire birth-death process can be described in terms of
such a quantity, through a so-called ‘Master equation’. The master equation is a partial
differential equation (PDE) for the probability of being in a given state at a given time,
However, in all but the simplest cases, we can’t actually solve this PDE, because it is simply
too hard. The primary source of difficulty is non-linearity in the transition rates and the fact
that transitions occur in discrete, discontinuous ‘jumps’. It is much easier to describe and
analyze systems that change ‘continuously’.

2.1.2 SDEs and the Fokker-Planck equation

Stochastic systems which change continuously (in the state space) can be described in
terms of a ‘stochastic differential equation’ (SDE), which here is interchangeable with the
phrase ‘Itô process’. An SDE for a stochastic process {Xt}t≥0 is an equation of the form

Xt =

t∫
0

F (s,Xs)ds+

t∫
0

G(s,Xs)dWs (2.1)

where F (t, x) and G(t, x) are ‘nice’ functions. In the math, physics, and related literature, F
and G are often called the ‘drift’ and ‘diffusion’ terms of the process respectively. However, I
will not use this terminology here to avoid potential confusion with genetic/ecological drift
(which actually manifests in the ‘diffusion’ term G, whereas directional effects like selection
manifest in F , the term called ‘drift’ in the math/physics terminology. This can obviously be
very confusing).

Wt denotes the so-called ‘Wiener process’ or ‘standard Brownian motion’. Named after
the botanist Robert Brown, who was looking at the random erratic motion of pollen grains in
water, the (standard) Brownian motion {Wt}t≥0 is a stochastic process that is supposed to
model ‘random noise’ or ‘undirected diffusion’ of a particle in a medium. If one imagines Wt

as recording the position of a small pollen grain at time t, then Wt can be formally thought
of as a model with the following assumptions:

• The pollen grain starts at the origin, i.e W0 = 0. This is a harmless assumption made
for convenience and amounts to a choice of coordinate system.
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• The pollen grain moves without discontinuous jumps across regions of space, i.e the
map t→ Wt is continuous.

• The future movement of the pollen grain is independent of its past history. That is,
given any three times u < s < t, the displacement Wt −Ws is independent of the past
position Wu.

• Between two observations, the pollen grain is equally likely to have moved in any
direction, and the distance moved is normally distributed with variance corresponding
to the time interval between the two observations (i.e. your uncertainty regarding its
position is greater if it has been longer since you last saw it). More precisely, given two
times s < t, the displacement Wt −Ws follows a normal distribution with a mean of 0
and a variance of t− s.

It can then be shown that since the motion is equally likely to be in any direction, the expected
position at any point of time is the same as the initial position, i.e E[Wt|W0] = W0 = 0.

The second integral in equation (2.1) is Itô’s ‘stochastic integral’, and is to be interpreted
in the following sense: Fix a time T > 0. For any n ≥ 2, let Πn = {t1, t2, . . . , tn} be a
partition of the interval [0, T ]. In other words, the points contained in Πn divide [0, T ] into
n slices of the form [ti, ti+1] such that 0 = t0 < t1 < t2 < . . . < tn = T . Then, the (Itô)
stochastic integral of the function G(t, x) over the time interval [0, T ] is given by

T∫
0

G(s,Xs)dWs := lim
n→∞

∑
ti∈Πn

G(ti, Xti)(Wti+1
−Wti)

That is to say, it is obtained by dividing our time interval into slices of the form [ti, ti+1],
computing the ‘area of the rectangle’ formed with Wti+1

−Wti and G(ti, Xti) as sides, and
then taking the limit1 of finer and finer slices of time. This should look similar to the classic
Riemann integral, with the uniform width ti+1 − ti of the Riemann integral replaced by a
random width Wti+1

−Wti corresponding to the (random) displacement of a Brownian particle
during the uniform time interval [ti, ti+1].

1If you are familiar with some real analysis, it bears noting that this limit is in L2(P), whereas the
corresponding limit in the usual Riemann-Stieltjes integral is evaluated pointwise. If you don’t know what
this sentence means, just ignore it for the purposes of this thesis :)
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Equation (2.1) is often represented in the ‘differential’ form:

dXt = F (t,Xt)dt+G(t,Xt)dWt (2.2)

The physics literature also often uses the ‘Langevin’ form:

dx

dt
= F (t, x) +G(t, x)η(t) (2.3)

where η(t) is supposed to be ‘Gaussian white noise’, a ‘function’ that is defined indirectly
such that the integral

∫ t

0
G(s, x)η(s)ds behaves identically to

∫ t

0
G(s,Xs)dWs. However, it is

important to remember that these are both purely formal2 expressions - equation (2.2) is
meaningless on its own and is really just shorthand for equation (2.1), which is well-defined
as explained above; Equation (2.3) is even worse, because the Brownian motion is known
to be non-differentiable, and as such, η(t) cannot really exist - both equations are thus to
be interpreted as shorthand for equation (2.1). SDEs are convenient because they satisfy
several ‘nice’ analytical properties. For example, using the fact that the Brownian motion has
no expected change in value (i.e E[Wt|W0] = W0 = 0), it can be shown that the stochastic
integral also has an expectation value of 0 for all t, i.e:

E

 t∫
0

G(s,Xs)dWs

∣∣∣∣X0

 = 0

One important but not immediately obvious consequence of the definition of stochastic
integrals and the Brownian motion is that we can no longer rely on the normal rules of
calculus when dealing with stochastic integrals. In regular calculus, if we had a continuous
quantity x(t) satisfying

dx

dt
= f(x) + g(x)

for two ‘nice’ real functions f and g, then, given any real function h, we can calculate how
the quantity h(x(t)) changes over time using the chain rule of differentiation, which says that

dh

dt
=
dh

dx

dx

dt
= h′(x)f(x) + h′(x)g(x)

2Perhaps confusingly, theoretical people often use ‘formal’ to refer to notation or calculation that is devoid
of semantic content, to contrast with things that have rigorous meaning. For example, a ‘formal calculation’
can often mean just manipulating the symbols without any rigorous justifications for whether the terms being
manipulated exist. Most normal people would probably call this an ‘informal’ calculation :)
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i.e.
dh = h′(x)f(x)dt+ h′(x)g(x)dt

Naively, we may expect the same logic to still hold true for one-dimensional Itô processes of
the form

dXt = F (Xt)dt+G(Xt)dWt

with gdt simply being replaced by GdWt on the RHS. However, this does not work. The
correct relation is instead given by Itô’s formula3:

dh(Xt) = h′(Xt)F (Xt)dt+ h′(Xt)G(Xt)dWt +
h′′(Xt)

2
G2(Xt)dt

There is now an extra h′′(Xt)G
2(Xt)/2 term that does not exist in the deterministic setting(!).

Using Itô’s formula and some simple algebra, one can then show that given any process Xt

taking values in R satisfying the SDE (2.2), the associated probability density P (x, t) of
finding the process in a state x ∈ R satisfies the PDE

∂P

∂t
(x, t) = − ∂

∂x
{F (t, x)P (x, t)}+ 1

2

∂2

∂x2
{(G(t, x))2P (x, t)} (2.4)

I present a simple informal derivation in Appendix A for the sake of completeness. Equation
(2.4) is called the ‘Fokker-Planck equation’ in the physics and applied mathematics litera-
ture (Gardiner, 2009) and is often called the ‘Kolmogorov forward equation’ in the population
genetics (Ewens, 2004; Barton and Etheridge, 2019) and pure mathematics (Øksendal, 1998)
literature. As I explain in Appendix A, the Fokker-Planck equation can be viewed as a
‘conservation law’ for probability that mathematically expresses the common-sense observation
that the sum (or integral) of probabilities over the entire state space cannot change over time
(since it must always equal 1). If the function G is independent of x, it comes out of the
derivatives in equation (2.4), and the resultant Fokker-Planck equation is said to be ‘linear’
(and is much easier to solve). It bears noting that the Fokker-Planck equation is always linear
in the probability density P (x, t), and thus the linearity here means that the equation is
linear in the noise term in the corresponding SDE (Van Kampen, 1981; Gardiner, 2009).

This link between SDEs and Fokker-Planck equations goes both ways: One can show that
every stochastic process with a probability density described by a Fokker-Planck equation of

3Itô’s formula also additionally requires h ∈ C2(R), meaning that h is continuous and the first and second
derivatives of h exist and are also continuous
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the form (2.4) corresponds to the solution of an SDE of the form (2.2), though the proof is
much more technical and will not be discussed here. This two-way correspondence proves to
be extremely useful, since the two formulations are complementary and one may be much
easier than the other for solving a particular problem. This correspondence makes it greatly
desirable to be able to describe our stochastic process of interest as either the solution to an
Itô SDE of the form (2.2) or as the solution to a Fokker-Planck equation of the form (2.4).
System-size expansions facilitate such a description for birth-death processes.

2.1.3 Density-dependence and the intuition for system-size expan-

sions via ecology

The fundamental idea behind the system-size expansion relates to the nature of the
jumps between successive states of a birth-death process. In most situations of interest to
population dynamics, at an individual level, births and deaths of individuals are affected by
ecological rules that depend on the local population density and not directly on the total
population size. Despite this, the jumps themselves occur in terms of the addition (birth) or
removal (death) of a single individual from the population. If there are many individuals,
each individual contributes a negligible amount to the density, and thus, the discontinuous
jumps due to individual-level births or deaths can look like a small, continuous change in
population density. This is the essential idea behind the system-size expansion. The name
derives from the formalization of this idea as a change of variable from the discrete values
{0, 1, 2, . . . , n− 1, n, n+1, . . .} to the approximately continuous values {0, 1/K, 2/K, . . . , x−
1/K, x, x+1/K, . . .} through the introduction of a ‘system size parameter’ K. In physics and
chemistry, K is usually the total volume of a container in which physical or chemical reactions
take place and is thus a ‘hard’ limit on the number of discrete values allowed. In ecology, we
will only impose a ‘soft’ limit by requiring that births and deaths must scale with K in a
way that the population almost surely cannot grow indefinitely if K is finite, reflecting the
empirical fact that the total amount of resources in the world is limited (of course, this should
also be reflected in how birth and death rates vary as functions of population density). Thus,
in our systems, K will manifest as some fundamental limit on resources, such as habitat size
or carrying capacity. When K is large, the fact that transitions occur in units of a small value
1/K can be exploited via a Taylor expansion of the transition rates in the Master equation,
which then yields a Fokker-Planck equation upon neglecting higher order terms4. A similar

4If this sounds handwavy to you, see chapter 11, section 3 in Ethier and Kurtz (1986) for a more rigorous
treatment.
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approximation is well-known (ever since Fisher) in theoretical population genetics, where
it goes by the name of the ‘diffusion approximation’ (Ewens, 2004; Barton and Etheridge,
2019) or ‘continuum limit’ (Czuppon and Traulsen, 2021), and has been heavily used by
Kimura (Crow and Kimura, 1970) in his stochastic models. However, the population genetics
version of the approximation usually either relies on total population size being fixed (Crow
and Kimura, 1970; Lande, 1976; Ewens, 2004) or is conducted in an ad-hoc manner without
specifying an explicit system size parameter.

2.1.4 The intuition for the weak noise approximation in ecology

If the parameter K is sufficiently large, then the Fokker-Planck equation obtained via the
system-size expansion can be further simplified to obtain a linear Fokker-Planck equation.
This is accomplished by viewing the stochastic dynamics as fluctuating about a deterministic
trajectory5 (obtained by letting K → ∞) and only works if K is large enough to be able
to neglect all but the highest-order terms. This is usually an excellent approximation for
populations in which the deterministic trajectory has already reached an attractor (stable
fixed point, stable limit cycle, etc.). Since many deterministic eco-evolutionary models are
expected to relax to such attractors, such an approximation is a useful first step in increasing
the generality of existing models (which are usually studied only in the equilibrium regime)
to incorporate the dynamics of finite populations. This approximation is best suited to
describe populations that are ‘medium sized’ - small enough that they cannot be assumed to
be infinitely large, yet large enough that stochasticity is rather weak and the deterministic
limit is somewhat predictive - a situation that occurs frequently in ecology and evolution.

2.2 Warm up: One-dimensional processes for population

size

The simplest birth-death processes are those in which the state at any time can be
characterized by a single number. Populations of identical individuals are an obvious example
of such a system. I will use this toy system as an illustration of the techniques that will be
used for the actual problems we intend to tackle in the next sections. The mathematics below
are adapted from sections 6.3 and 7.2 of Gardiner (2009) to use biological language and more
intuitive notation/explanations.

5This idea can be made much more rigorous via an analog of the central limit theorem for density-dependent
Markov chains. See chapter 11, section 2 in Ethier and Kurtz (1986)



Mathematical background and an expository example 25

2.2.1 Description of the process and the Master Equation

Consider a population of identical individuals subject to some ecological rules that affect
individuals’ birth and death rates. I will neglect any potential factor that could lead to
two individuals becoming non-identical in their birth and death rates, like mutations, etc.
Since all individuals are identical in their birth and death rates, we only really need to
track the total population size through time to know everything there is to know about the
population. The population as a whole at any time t can thus be characterized by a single
number - its population size (Figure 2.1). Imagine further that if a population has n identical
individuals, then, from the ecological rules, we can determine a birth rate b(n), which gives
us a measure of the probability that a new individual will be born and the population size
becomes n+ 1 ‘per unit time’. One must be slightly precise about what exactly they mean
when they say ‘per unit time’ since there are no discrete ‘time steps’ for individuals to be
born. Here, by ‘birth rate’, I mean the probability that there will be a birth (and no death)
per an infinitesimal amount of time. More formally, letting Nt denote the random variable
representing the population size at time t and letting P(E) denote the probability (in the
common-sense usage) of an event E, the birth rate6 b(n) of individuals a population with
population size n is the quantity

b(n) := lim
ϵ→0

1

ϵ
P (Nt+ϵ = n+ 1|Nt = n) (2.5)

Exactly analogously, we can also define the death rate d(n) of individuals in a population of
n individuals as the quantity

d(n) := lim
ϵ→0

1

ϵ
P (Nt+ϵ = n− 1|Nt = n) (2.6)

An alternative, perhaps more intuitive characterization, of these same quantities is the
following: If we have a population of size n, and we know that either a birth or a death is
about to occur, then, the probability that the event that occurs is a birth is

P
[

birth
∣∣ something happened

]
=

b(n)

b(n) + d(n)

6Note that unlike usual ecology convention, this is not a per-capita birth rate. The ecology per capita
birth and death rates can be found by dividing my birth/death rates by the current population size n(t)
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and the probability that the event is instead a death is

P
[

death
∣∣ something happened

]
=

d(n)

b(n) + d(n)

Example 1. Consider the case where the per-capita birth rate is a constant λ > 0, i.e, b(n) =
λn, and the per-capita death rate has the linear density-dependence

(
µ+ (λ− µ) n

K

)
, i.e. the

total death rate is d(n) =
(
µ+ (λ− µ) n

K

)
n, where µ and K are positive constants. Taking

the difference between the birth and death rates, we obtain b(n)− d(n) = (λ− µ)n
(
1− n

K

)
,

where, identifying r = λ−µ, we obtain the familiar functional form of the density dependence
of the logistic equation. Note, however, that the population itself is stochastic, whereas the
logistic equation is a deterministic description.

Now, let P (n, t) be the probability that the population size is n at time t. We wish to
have an equation to describe how P (n, t) changes with time - this will provide a probabilistic
description of how we expect the population size to change over time.

Figure 2.1: Schematic description of a one-dimensional birth-death process.
Consider a population of identical individuals. The state of the system can be described by a
single number, the population size (numbers within the circles). Births and deaths result in
changes in the total population size, and the birth and death rates (arrows) are dependent
on the current population size. For a given state n, the blue arrows depict the rate of ‘inflow’
to the state (from the blue states), whereas the red arrows depict the rate of ‘outflow’.

To do this, we imagine a large ensemble of populations. In a large ensemble of copies
evolving independently, a fraction P (n, t) will have population size n at time t by definition of
probability. We can now simply measure the ‘inflow’ and ‘outflow’ of copies of the population
from each state (Figure 2.1). If a population has n individuals, it could either have gotten
there from a population of n+1 individuals, with a death rate of d(n+1), or from a population
of n− 1 individuals, with a birth rate of b(n− 1). Thus, the rate of ‘inflow’ to the state n is
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given by
Rin(n, t) = b(n− 1)P (n− 1, t) + d(n+ 1)P (n+ 1, t) (2.7)

Similarly, if the population has n individuals, it could obtain a different state in two ways:
With rate b(n), the population witnesses a birth, and with rate d(n), it witnesses a death.
Thus, the rate of ‘outflow’ is given by

Rout(n, t) = b(n)P (n, t) + d(n)P (n, t) (2.8)

The rate of change of the probability of the system being in state n is given by the rate of
inflow minus the rate of outflow. Thus, we have

∂P

∂t
(n, t) = Rin(n, t)−Rout(n, t)

= b(n− 1)P (n− 1, t) + d(n+ 1)P (n+ 1, t)− b(n)P (n, t)− d(n)P (n, t) (2.9)

For convenience, let us define two ‘step operators’ E±, which act on any functions of populations
to their right by either adding or removing an individual, i.e

E±f(n, t) = f(n± 1, t)

Rearranging the RHS of (2.9) to write in terms of these step operators, we obtain the compact
expression

∂P

∂t
(n, t) = (E− − 1)b(n)P (n, t) + (E+ − 1)d(n)P (n, t) (2.10)

This is the so-called ‘master equation’, and completely describes our system. However, in
general, b(n) and d(n) may be rather complicated, in which case it may not be possible to
solve (2.10) directly.

2.2.2 The system-size expansion

The system-size expansion arises from noting that in many systems, the interactions are
governed not by population size, but by population density. However, the population jumps
themselves are discretized at the scale of the individual, which becomes negligibly small if we
have a large population density. Thus, we assume that there exists a system-size parameter
K > 0 such that the discrete jumps between states happen in units of 1/K, and we make the
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substitutions

x =
n

K

bK(x) =
1

K
b(n)

dK(x) =
1

K
d(n)

As K grows very large, the discontinuous jumps in n thus appear like ‘continuous’ transitions
in our new variable x, which can be thought of as the ‘density’ of organisms. A system-size
parameter K often naturally emerges in ecological systems through resource-limiting factors
such as habitat size or carrying capacity. Under these substitutions, equation (2.10) becomes

∂P

∂t
(x, t) = (∆− − 1)KbK(x)P (x, t) + (∆+ − 1)KdK(x)P (x, t) (2.11)

where we now have the new step operators

∆±f(x, t) = f

(
x± 1

K
, t

)
(2.12)

If K is large, then we can now taylor-expand the action of these step operators as:

∆±f(x, t) = f

(
x± 1

K
, t

)
= f(x, t)± 1

K

∂f

∂x
(x, t) +

1

2K2

∂2f

∂x2
(x, t) +O(K−3)

Substituting these expansions into (2.11) and neglecting terms of O(K−3) and higher, we
obtain

∂P

∂t
(x, t) = − ∂

∂x
{A−(x)P (x, t)}+ 1

2K

∂2

∂x2
{A+(x)P (x, t)} (2.13)

where
A±(x) = bK(x)± dK(x)

Equation (2.13) is a Fokker-Planck equation and corresponds to the SDE:

dXt = A−(Xt)dt+

√
A+(Xt)

K
dWt (2.14)

Note that the deterministic component of this process depends on the difference between
birth and death rates (a mechanistic measure of Malthusian fitness), whereas the stochastic
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part depends on their sum (a measure of total turnover rate) and scales inversely with
√
K

and thus vanishes for infinitely large populations. As we will see, this general pattern will
turn up repeatedly.

2.2.3 Stochastic fluctuations and the weak noise approximation

If we assume the noise is weak (this will be made precise shortly), then we can go still
further with analytic techniques by measuring fluctuations from the deterministic expectations,
albeit with some slightly cumbersome calculations to arrive at the final expressions. We will
grit our teeth and get through the algebra below, with my promise that the final answer is
neat and easy to handle. It is clear that as K → ∞, equation (2.14) describes a deterministic
process, obtained as the solution to

dx

dt
= A−(x) = bK(x)− dK(x) (2.15)

This is a very intuitive equation, saying that the rate of change of the population is equal to
the birth rate minus the death rate. Let the solution of this equation be given by α(t), so
that dα

dt
(t) = A−(α(t)).

We can now measure (scaled) fluctuations from the deterministic solution α through a
new variable y =

√
K (x− α(t)). For notational clarity, I will also introduce a new time

variable s = t which is equal to the original time variable (this is just so the equations look
clearer). Let the probability density function of this new variable be given by P̃ (y, s). In
summary, I have introduced the variables:

y =
√
K (x− α(t))

s = t

P̃ (y, s) =
1√
K
P (x, t)

Note that by ordinary rules of variable substitution, we have:

∂P̃

∂t
=
∂P̃

∂y

∂y

∂t
+
∂P̃

∂s

∂s

∂t

=
∂P̃

∂y

(
−
√
K
dα

dt

)
+
∂P̃

∂s
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= −
√
KA−(α(s))

∂P̃

∂y
+
∂P̃

∂s
(2.16)

and
∂

∂y
=

1√
K

∂

∂x
(2.17)

Reformulating (2.13) in terms of y, s and P̃ and substituting (2.16) and (2.17) yields:

−A−(α)
∂P̃

∂x
+
∂P̃

∂s
= −

√
K
∂

∂y

(
A−(α +

y√
K

)P̃

)
+

1

2

∂2

∂y2

(
A+(α +

y√
K

)P̃

)
⇒ ∂P̃

∂s
= − ∂

∂y

[√
K

(
A−(α +

y√
K

)− A−(α)

)
P̃

]
+

1

2

∂2

∂y2

(
A+(α +

y√
K

)P̃

)
(2.18)

We are now ready to make a weak noise ‘expansion’ (This is a special case of a more general
idea called a ‘perturbative expansion’ or ‘perturbation theory’ in physics and related fields).
We do so by assuming that P̃ , A−(α+ y√

K
), and A+(α+ y√

K
) can be approximated by series

expansions in 1√
K

of the form:

P̃ =
∞∑
n=0

P̃n

(
1√
K

)n

A−
(
α(s) +

y√
K

)
=

∞∑
n=0

A−
n (s)

(
y√
K

)n

A+

(
α(s) +

y√
K

)
=

∞∑
n=0

A+
n (s)

(
y√
K

)n

with A−
0 (s) = A−(α(s)), A+

0 (s) = A+(α(s)). These could be Taylor expansions, for example,
but the exact form of the coefficients is irrelevant as long as it is known to us, so any expansion
will work. We can now substitute these series expansions into (2.18) to obtain:

∞∑
n=0

(
1√
K

)n
∂P̃n

∂s
= − ∂

∂y

[
√
K

(
∞∑
n=1

A−
n (s)

(
y√
K

)n
)(

∞∑
m=0

P̃m

(
1√
K

)m
)]

+
1

2

∂2

∂y2

[(
∞∑
n=0

A+
n (s)

(
y√
K

)n
)(

∞∑
m=0

P̃m

(
1√
K

)m
)] (2.19)

We can now compare the coefficients of K−n/2 for each n in order to arrive at approximations
in the series expansion, the idea being that you neglect all terms which are of order greater
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than O(K−m/2) for some m according to the desired precision.

We observe that for any fixed r, the coefficient of K−r/2 on the LHS is ∂P̃r

∂s
. On the RHS,

the coefficients of K−r/2 in the second term have the form P̃mA
+
n y

n, subject to the constraint
that m+ n = r. Furthermore, all such terms (and only such terms) are coefficients of K−r/2.
Thus, after grouping, the coefficient of K−r/2 from the second terms of the RHS of (2.19) is
precisely

1

2

∂2

∂y2

r∑
m=0

P̃mA
+
r−my

r−m

Exactly analogous reasoning reveals that the contribution of the first term of the RHS is:

− ∂

∂y

r∑
m=0

P̃mA
−
r−m+1y

r−m+1

Thus, we find that the rth term of the expansion satisfies:

∂P̃r

∂s
= − ∂

∂y

(
r∑

m=0

P̃mA
−
r−m+1y

r−m+1

)
+

1

2

∂2

∂y2

(
r∑

m=0

P̃mA
+
r−my

r−m

)
(2.20)

We will now make the meaning of ‘weak’ precise. Let us assume that the fluctuations are weak
enough that we can obtain a reasonable approximation of the dynamics by retaining only the
highest order (in 1/K) term in equation (2.20) and neglecting all higher-order terms7. We
are then left with the expression:

∂P̃0

∂s
= −A−

1 (s)
∂

∂y
(yP̃0) +

A+
0 (s)

2

∂2P̃0

∂y2
(2.21)

which is simply the Fokker-Planck equation for the Itô process

dYt = A−
1 (t)Ytdt+

√
A+

0 (t)dWt

This is the ‘weak noise approximation’, (sometimes also called the ‘linear noise approximation’
because the resulting Fokker-Planck equation is linear). This equation describes a so-called
‘Ornstein-Uhlenbeck process’, and is easily solved by using exp

(
−
∫
A−

1 (s)ds
)

as an ‘integrating

7For example, we may imagine this is reasonable if the deterministic trajectory is at a stable fixed point
and subject to weak fluctuations
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factor’. In particular, multiplying both sides by exp
(
−
∫
A−

1 (s)ds
)

yields

exp

−
t∫

0

A−
1 (s)ds

 dYt − YtA
−
1 (t) exp

−
t∫

0

A−
1 (s)ds

 dt =
√
A+

0 (t) exp

−
t∫

0

A−
1 (s)ds

 dWt

⇒ d

exp

−
t∫

0

A−
1 (s)ds

Yt

 =
√
A+

0 (t) exp

−
t∫

0

A−
1 (s)ds

 dWt

Integrating both sides and noting that A+
0 (s) = A+(α(s)), we thus obtain the final expression

Yt = Y0 exp

 t∫
0

A−
1 (s)ds

+

t∫
0

exp

−
t∫

s

A−
1 (v)dv

√A+(α(s))dWs (2.22)

as the zeroth-order weak noise approximation for stochastic fluctuations from the deterministic
trajectory due to demographic noise. This equation can be exactly solved via analytical
techniques and one can get many insights from the solution. For example, if Y0 = 0 (i.e we
start at the deterministic steady state, a natural assumption for measuring fluctuations from
it), then we can show by taking expectations in (2.22) and using results presented in 2.1.2
that we must have E[Yt|Y0] = 0. In other words, the fluctuations have zero expectation and
are expected to occur symmetrically about α(t)), with no bias. The variance (spread) of the
fluctuations Yt, as well as higher moments, can also be exactly calculated from (2.22) using
some tools from stochastic calculus, but I will not demonstrate this here.

Importantly, higher order terms do not form Fokker-Planck equations, and in general,
P̃r for r > 0 may be negative and therefore does not even describe a probability. As such,
formulating the solution as the solution to an SDE only works for P̃0. If noise is large enough
that it is not well-approximated by P̃0, this approximation is not very useful.



Chapter 3

Population dynamics from stochastic first
principles

Somewhere [...] between the specific that
has no meaning and the general that
has no content there must be, for each
purpose and at each level of abstraction,
an optimum degree of generality

Kenneth Boulding (1956)

Let us now consider the situation we are actually interested in. Assume that our population
is not composed of identical organisms, but instead can contain up to m different kinds
of organisms - for example, individuals may come in one of m colors, or a gene may have
m different alleles. The specific interpretation of the different variants is irrelevant to our
formalism, and I, therefore, refer to each distinct variant of an organism simply as a ‘type’.
Unlike many classic stochastic formulations in evolutionary theory (Fisher, 1930; S. Wright,
1931; Moran, 1958; Kimura, 1957; Kimura, 1964; Kimura and Crow, 1964; Crow and Kimura,
1970; Lande, 1976), I do not assume a fixed (effective) population size and instead allow the
total population size to fluctuate naturally over time.

33
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3.1 Description of the process and the Master Equation

Given a population that can contain up to m different (fixed) kinds of organisms, it can
be entirely characterized by specifying the number of organisms of each type (Figure 3.1A).
Thus, the state of the population at a given time t is an m-dimensional vector of the form
n(t) = [n1(t), n2(t), . . . , nm(t)]

T, where ni(t) is the number of individuals of type i in the
population at time t.

Given a state n(t), we also need to describe how this vector can change over time due
to births and deaths (ecology). In this case, a birth or death could result in an individual
belonging to one of m different types. Thus, whereas before we had two functions b(n) and
d(n) which take in a number as an input, we now require 2m functions that take in a vector
as an input (Figure 3.1B). In other words, for each type i ∈ {1, 2, . . . ,m}, we must specify a
birth rate bi(n) and a death rate di(n). By ‘rates’, I mean that if we know that either a birth
or a death occurs, then the probability that this event is the birth of an individual of type i
is given by

P
[

Birth of a type i individual
∣∣ something happened

]
=

bi(n)
m∑
j=1

(bj(n) + dj(n))

and the probability that the event is the death of an individual of type i is

P
[

Death of a type i individual
∣∣ something happened

]
=

di(n)
m∑
j=1

(bj(n) + dj(n))

As before, we can describe the rate of change of P (n, t), the probability of finding the
population in a state n at time t, by measuring the inflow and outflow rates. Since the
population changes in units of exactly one individual (by definition of a birth-death process; see
section 2.1), we know that these inflow and outflow rates must only involve populations that
are a single individual away from our focal population. In other words, for a population n =

[n1, . . . , nm]
T, the ‘inflow’ is from all populations of the form [n1, . . . , ni−1, . . . , nm]

T through
a birth of a type i individual, and from all populations of the form [n1, . . . , ni + 1, . . . , nm]

T
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Figure 3.1: Schematic description of a multi-dimensional birth-death process. (A)
Consider a population of birds in which individuals are either red or blue. In this case, we
have m = 2, since there are two types of individuals in the population. (B) The state of the
system can be described by a vector containing the number of individuals of each discrete
type (in this case, the number of red and blue birds in the population). Births and deaths
result in changes in the elements of the state vector.

through the death of a type i individual. Thus, we have the inflow rate

Rin(n, t) =
m∑
j=1

bj([n1, . . . , nj − 1, . . . , nm]
T)P ([n1, . . . , nj − 1, . . . , nm]

T, t)

+
m∑
j=1

dj([n1, . . . , nj + 1, . . . , nm]
T)P ([n1, . . . , nj + 1, . . . , nm]

T, t)

(3.1)

Outflow is through births and deaths of individuals in the population n itself, and thus we
have:

Rout(n, t) =
m∑
j=1

bj(n)P (n, t) +
m∑
j=1

dj(n)P (n, t) (3.2)

We will now define step operators, both for notational ease and in anticipation of the system
size expansion. For each i ∈ {1, . . . ,m}, let us define two step operators E±

i by their action
on any function f([n1, . . . , nm], t) as:

E±
i f([n1, . . . , ni, . . . , nm]

T, t) = f([n1, . . . , ni ± 1, . . . nm]
T, t) (3.3)

In other words, E±
i just changes the population through the addition or removal of one type i
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individual. We can now the rate of change of P (n, t) as

∂P

∂t
(n, t) = Rin(n, t)−Rout(n, t) (3.4)

Substituting (3.1), (3.2), and (3.3) into equation (3.4), we obtain:

∂P

∂t
(n, t) =

m∑
j=1

[
(E−

j − 1)bj(n)P (n, t) + (E+
j − 1)dj(n)P (n, t)

]
(3.5)

This is the master equation of our m-dimensional process.

3.2 The system-size expansion

As explained in Section 2.1.3, we will now assume (on ecological grounds) that there
exists a system-size parameter K > 0 such that the discrete jumps between states happen in
units of 1/K and the total population size is controlled by K, with K = ∞ corresponding to
an infinitely large population. In particular, we assume that the birth and death rates scale
such that we can make the substitutions

x :=
n

K

b
(K)
i (x) :=

1

K
bi(n)

d
(K)
i (x) :=

1

K
di(n)

where x = n/K measures population density instead of population numbers. We now define
new step operators ∆±

i by their action on any real-valued function f(x, t) as

∆±
i f([x1, . . . , xm]

T, t) = f([x1, . . . , xi ±
1

K
, . . . xm]

T, t) (3.6)

In terms of these new variables, (3.5) becomes

∂P

∂t
(x, t) = K

m∑
j=1

[
(∆−

j − 1)b
(K)
j (x)P (x, t) + (∆+

j − 1)d
(K)
j (x)P (x, t)

]
(3.7)
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If K is large, we can once again Taylor expand the action of the step operators as

f([x1, . . . , xi ±
1

K
, . . . xm]

T, t) = f(x, t)± 1

K

∂f

∂xi
(x, t) +

1

2K2

∂2f

∂x2i
(x, t) +O(K−3)

which, after substituting into (3.7) and neglecting O(K−3) terms, yields the equation

∂P

∂t
(x, t) =

m∑
j=1

[
− ∂

∂xj
{A−

j (x)P (x, t)}+
1

2K

∂2

∂x2j
{A+

j (x)P (x, t)}
]

(3.8)

where
A±

i (x) = b
(K)
i (x)± d

(K)
i (x)

Equation (3.8) is an m-dimensional Fokker-Planck equation, and corresponds to the m-
dimensional Itô process

dXt = A−(Xt)dt+
1√
K

D(Xt)dWt (3.9)

where A−(Xt) is an m-dimensional vector with ith element = A−
i (Xt). D(Xt) is an m×m

matrix with ijth element (D(Xt))ij = δij
(
A+

i A
+
j

) 1
4 , where δij is the Kronecker delta symbol,

defined by

δij =

1 i = j

0 i ̸= j

Finally, Wt is the m-dimensional Wiener process and can be thought of as a vector of
independent one-dimensional Wiener processes (which have been defined in 2.1.2). This is
the ‘mesoscopic’ description of our process.

3.3 Functional forms of the birth and death rates

I assume that the birth and death rate functions have the functional form

b
(K)
i (x) = xib

(ind)
i (x) + µQi(x)

d
(K)
i (x) = xid

(ind)
i (x)

(3.10)

where b(ind)
i (x) and d(ind)

i (x) are non-negative functions that respectively describe the per-capita
birth and death rate of type i individuals, µ ≥ 0 is a constant describing the mutation rate in
the population, and Qi(x) is a non-negative function that describes the additional birth rate
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of type i individuals due to mutations in the population x that cannot be captured in the per-
capita birth rate1. My assumptions on the functional forms (3.10) thus amount to saying that
birth and death rates can be separated into mutational and non-mutational components, and
furthermore that the density dependence of the birth and death rates due to non-mutational
effects is in a form that allows us to write down per-capita birth and death rates for each
type. Let us define the Malthusian fitness of the ith type as wi(x) := b

(ind)
i (x) − d

(ind)
i (x),

and the per-capita turnover rate of the ith type as τi(x) = b
(ind)
i (x) + d

(ind)
i (x). The quantity

wi(x) describes the per-capita growth rate of type i individuals in a population x discounting
mutation. Ecologists often denote this quantity by the symbol ri and simply call it the
(exponential) growth rate of type i, but I will stick to wi and ‘fitness’ here. τi is a measure of
the number of events (birth events + death events) that a type i individual experiences in a
given time interval — populations of types with higher turnover rates experience more events
(on average) than those with lower turnover rates. This can be thought of as a measure of the
‘pace of life’ of a type. I briefly note that the quantity τi has also been called the ‘variability
in the reproductive output’ in the literature (Gillespie, 1974). It is notable that both wi and
τi depend on the state of the population as a whole (i.e. x) and not just on the density of
the focal type. Thus, in general, the fitness and the turnover rate in our model are both
frequency and density-dependent.

3.4 Statistical measures for population-level quantities

Though the causes of evolution are generally described in terms of ecological phenomena
affecting birth, death, and interactions, all of which operate at the individual level like we
have been working with, evolution itself is typically described at a population level, in terms
of type frequencies (Bourrat, 2019). We are also often interested in describing the effect
of evolutionary forces on population-level quantities, such as the mean fitness or the mean
phenotype in the population. Furthermore, the relevant quantities at the individual level,
such as individual fitness or phenotype, are typically equal for all individuals of the same
type (in some sense this is our basis for defining different types in the first place). I use
the term ‘type-level quantities’ henceforth to refer to such quantities that are equal for all
individuals that are of the same type. To facilitate the description of such quantities, given

1When xi = 0, i.e. there are no type i individuals in the population, individuals of type i may still be born
through mutations during births of the other types. This cannot be captured in b

(ind)
i (x) because the term

xib
(ind)
i (x) vanishes when xi = 0. Note that no analogous problem exists for the death rate, since the death

rate of type i individuals must be 0 when xi is 0 to ensure that we never have negative population densities.



Population dynamics from stochastic first principles 39

any state x(t) that describes our population at time t, let us first define the total (scaled)
population size and the frequency of each type in the population as:

NK(t) :=
m∑
i=1

xi(t) =
1

K

m∑
i=1

ni(t)

pi(t) :=
xi(t)

NK(t)
=

ni(t)
m∑
j=1

ni(t)

(3.11)

Now, let f be any type-level quantity with (possibly time-dependent) value fi ∈ R for the
ith type. For example, if each type is a phenotype for a trait such as height, which can be
assigned a numerical value, then setting fi = value of ith phenotype gives us the mean trait
value in the population. We can compute the statistical mean value of any such quantity in
the population as

f(t) :=
m∑
i=1

fipi (3.12)

the statistical covariance of two such quantities f and g as

Cov(f, g) := fg − fg (3.13)

and the statistical variance of a quantity f as σ2
f := Cov(f, f).

It is important to recognize that these quantities are distinct from and independent of the
probabilistic expectation, variance, and covariance obtained by integrating over realizations
in the underlying probability space. Indeed, for finite populations, the statistical mean,
statistical variance, and statistical covariance are all themselves stochastic processes: For
each instant of time, these population-level quantities are a random variable (i.e. a function
and not just a number) depending on p, the (random) vector of type frequencies in the
population. For infinite populations, the statistical mean, variance, and covariance are
entirely deterministic time-dependent quantities that simply describe how f is distributed
across the population. Previous authors, such as Frank (Frank, 1997; Frank, 2012) and
van Veelen (Van Veelen, 2005; Van Veelen, 2020), have pointed out that failure to clearly
make this distinction between statistical operations and probabilistic operations has led to
much confusion in the population biology literature with regard to the infinite population
Price equation, which is entirely deterministic and does not incorporate features of finite
populations such as drift in its original formulation.
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3.5 Stochastic Trait Frequency Dynamics

In appendix B, I use a multivariate version of Itô’s formula to derive a general stochastic
equation for the frequencies of each type in the population. Letting w =

∑
wipi and

τ =
∑
τipi be the average population fitness and turnover respectively, I show in appendix B

that the frequency of the ith type in the population x(t) changes according to the equation:

dpi(t) =

[
(wi(x)− w)pi + µ

{
Qi(p)− pi

(
m∑
j=1

Qj(p)

)}]
dt

− 1

K

1

NK(t)

[
(τi(x)− τ)pi + µ

{
Qi(p)− pi

(
m∑
j=1

Qj(p)

)}]
dt

+
1√
K

1

NK(t)

[(
A+

i (x)
)1/2

dW
(i)
t − pi

m∑
j=1

(
A+

j (x)
)1/2

dW
(j)
t

] (3.14)

where W (1)
t ,W

(2)
t , . . . ,W

(m)
t are m independent one-dimensional Wiener processes and I have

used the notation Qi(p) = Qi(x)/NK(t) for notational clarity. I will show below that the
first term in this expression describes directional changes in the population composition due
to ‘classical’ evolutionary forces such as selection and mutation that occur in deterministic
infinite population models. The second term is an additional directional force on population
composition that is only seen in finite populations and can be thought of as a biasing ‘selection’
for reduced turnover rate due to an effect similar to gambler’s ruin in probability theory.
The consequences of this term, as well as connections with previous studies, are discussed in
detail in part III. Finally, the last term of equation (3.14) describes non-directional stochastic
effects due to fluctuations and has a ‘spreading effect’ (Also see equation (E.7) in Appendix E
for a more elegant representation of these noise terms as an integral against a single Wiener
process). For the case m = 2, µ = 0 (two interacting types of individuals with no mutations
between types), after using the representation of noise terms presented in Appendix E and
letting p = p1, equation (3.14) becomes the considerably simpler expression

dp =

[
(w1 − w2)p(1− p)− 1

KNK

(τ1 − τ2)p(1− p)

]
dt

+
1√
KNK

√
p(1− p) [τ1 + (τ2 − τ1)p]dWt

(3.15)
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In this equation, if we start with an initial condition p0 ∈ [0, 1], the system defined by
equation (3.15) will always remain in [0, 1], and in that sense, it is ‘well-behaved’. To see
this, one can observe that the RHS of equation (3.15) identically vanishes at both p = 0 and
p = 1, since every term on the RHS contains the product p(1− p). Further, since there is no
mutation between types, p = 0 (extinction of type 1 organisms) and p = 1 (extinction of type
2 organisms) are both ‘absorbing states’, i.e. a system which reaches these states can never
leave them. Well-behavedness at the boundaries for the more general equation (3.14) can be
checked directly, and has been carried out in Appendix F.

3.6 The infinite population limit

Like in 2.2, we can once again take K → ∞ in (3.9) to obtain a deterministic expression.
Here, the expression reads

dx

dt
= A−(x) = b(K)(x)− d(K)(x) (3.16)

where the m-dimensional vector-valued functions b(K)(x) and d(K)(x) on the RHS are defined
as having ith element b(K)

i (x) and d
(K)
i (x) respectively. For the trait frequencies, by taking

K → ∞ in (3.14), we obtain a deterministic equation that reads:

dpi
dt

= (wi(x)− w)pi + µ

[
Qi(p)− pi

(
m∑
j=1

Qj(p)

)]
(3.17)

The first term of (3.17) describes changes due to faithful (non-mutational) replication, and
the second describes changes due to mutation. For this reason, equation (3.17) is called the
replicator-mutator equation in the evolutionary game theory literature, where the individual
‘types’ are interpreted to be pure strategies (Hofbauer and Sigmund, 1998; Page and Nowak,
2002; Cressman and Tao, 2014). If in addition, each wi(x) is linear in x, meaning we can
write wi(x) =

∑
j aijxj for some set of constants aij, then we recover the more well-known

replicator-mutator equation for matrix games in which the constants aij form the ‘payoff
matrix’ (See the example presented in Appendix D). As is well-known, the replicator equation
(without mutation) for matrix games with m pure strategies is equivalent to the generalized
Lotka-Volterra equations for a community with m− 1 species (Hofbauer and Sigmund, 1998),
providing the connection to community ecology. Equation (3.17) is also equivalent to Eigen’s
quasispecies equation from molecular evolution if each ‘type’ is interpreted as a genetic
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sequence and each wi(x) is a constant function2 (Page and Nowak, 2002). We can now
calculate how the mean of any ‘type level’ quantity f , defined as fi for the ith type, changes
in the population (For example, if each type is a phenotype for a trait such as height, which
can be assigned a numerical value, then setting fi = value of ith phenotype gives us the mean
trait value in the population). The product rule of calculus tells us that we have the relation

d

dt

(
m∑
i=1

fipi

)
=

m∑
i=1

(
fi
∂pi
∂t

+ pi
∂fi
∂t

)
=

m∑
i=1

fi
∂pi
∂t

+

(
∂f

∂t

)
(3.18)

Multiplying both sides of equation (3.17) by fi and summing over all i, we obtain

m∑
i=1

fi
∂pi
∂t

=
m∑
i=1

fiwi(x)pi − w
m∑
i=1

fipi + µ

[
m∑
i=1

Qi(p)fi −

(
m∑
j=1

Qj(p)
m∑
i=1

pifi

)]

⇒ df

dt
= wf − (w)(f) + µ

[
m∑
i=1

Qi(p)fi −

(
m∑
j=1

Qj(p)

)
f

]

Using the definition of statistical covariance from (3.13), we obtain

m∑
i=1

fi
∂pi
∂t

= Cov(w, f) + µ

[
m∑
i=1

Qi(p)fi −

(
m∑
j=1

Qj(p)

)
f

]
(3.19)

Thus, substituting this into (3.18), we get

df

dt
= Cov(w, f) + µ

[
m∑
i=1

Qi(p)fi −

(
m∑
j=1

Qj(p)

)
f

]
+

(
∂f

∂t

)
(3.20)

This is a Price equation for quantities fi which can vary over time (Lion, 2018; Day et al.,
2020). To obtain the more familiar Price equation seen in textbooks, we can consider time-
independent fi, i.e. situations in which each fi is constant over time, and thus changes in
f are purely due to changes in the composition of the population. For such quantities, we
have ∂fi

∂t
= 0 ∀ i and thus obtain the dynamic version of the famous Price equation (Page

2Mutational effects are often additionally assumed to act through direct ‘transmission probabilities’ of
mutating from one type to another. This means that we can write Qi(p) =

∑
j Qijpj , where Qii = 0, and for

each j ̸= i, Qij ≥ 0 is a constant describing the probability of a j → i mutation (conditioned on the occurrence
of a mutation). Substituting this into (3.17) yields an equation in terms of ‘Q-matrices’ or ‘mutation matrices’
that may be more familiar to some.
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and Nowak, 2002; Lion, 2018):

df

dt
= Cov(w, f) + µ

[
m∑
i=1

Qi(p)fi −

(
m∑
j=1

Qj(p)

)
f

]
(3.21)

The first term of the RHS describes the statistical covariance between the quantity f and the
fitness w. The second term describes ‘transmission bias’ due to mutational effects - the first
summation is the ‘inflow’ of f due to mutations, and the second is the ‘outflow’.

3.7 Stochastic fluctuations and the weak noise approxi-

mation

As in the one-dimensional case, we can go a little further if the noise is sufficiently
weak. Let the deterministic trajectory obtained by solving (3.16) be given by α(t) =

[α1(t), α2(t), . . . , αm(t)]
T. We can once again track stochastic fluctuations from the determin-

istic trajectory by introducing the new variables

y =
√
K(x−α(t))

s = t

P̃ (y, s) =
1√
K
P (x, t)

(3.22)

Then, after some algebra that follows the exact same steps as in section 2.2.3 and retaining
only the highest order terms in

√
K, we obtain the equation:

∂P̃0

∂s
(y, s) =

m∑
j=1

(
− ∂

∂yj

{
(A−

j )1(s)P̃0(y, s)
}
+

1

2
Aj

+(α(s))
∂2

∂yj2
{P̃0(y, s)}

)
(3.23)

where (A−
j )1(s) is the O(1/

√
K) term of the power series expansion

A−
j (α+

y√
K

) =
∞∑
n=0

(A−
j )n(s)

(
y√
K

)n
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In the case where the series expansion is a Taylor expansion, then the first-order term of this
expansion is given by

(A−
j )1(s) =

m∑
i=1

yi

(
∂A−

j (x)

∂xi

∣∣∣∣
x=α(s)

)
(3.24)

In multi-variable calculus, the directional derivative3 Dv(f(x)) of a multidimensional function
f : Rm → R along a vector v is the function defined by:

Dv(f(x)) :=
m∑
i=1

(
∂f(x)

∂xi

)
vi = lim

h→0

f(x+ hv)− f(x)

h
(3.25)

Comparing with (3.24), we see that the weak-noise approximation of our process is:

∂P

∂t
(y, t) =

m∑
j=1

(
− ∂

∂yj

{
Dy(A

−
j (α))(t)P (y, t)

}
+

1

2
Aj

+(α(t))
∂2

∂yj2
{P (y, t)}

)
(3.26)

where we have dropped the tildes and gone back from s to t for notational clarity. The
directional derivative of the population turnover rate A−

j ‘in the direction’ of the stochastic
fluctuation y at the deterministic point α(s) is precisely the multidimensional analogue of
the derivative we had in (2.21). The meaning of equation (3.26) is clearer if we compute how
the moments of the fluctuation yi in the density of type i individuals (for some i) change
over time. Let n > 0. We have:

d

dt
E[yni ] =

d

dt

∫
Rm

yni P (y, t)dy (3.27)

=

∫
Rm

yni
∂P

∂t
(y, t)dy (3.28)

where I have assumed that yni and P (y, t) vary sufficiently smoothly to allow us to interchange
the order of derivatives and integrals. By the Leibniz integral rule, this only requires the
map (y, t) → yni P (y, t) to be bounded and C1 in an open subset of Rm × [0,∞). We have

also used the notation
∫
Rm

f(y) dy :=

∫
R

∫
R

· · ·
∫
R

f(y) dy1dy2 . . . dym. The one-dimensional

integrals are over the entire real line and not just over [0,∞) because fluctuations can be
either positive (greater than α(t)) or negative (lesser than α(t)). For notational brevity,
let us use the shorthand Dj := Dy(A

−
j (α))(t). We can now substitute (3.26) into (3.28) to

3Some authors use the notation ∂vf(x) or v · ∇f(x) for this object.
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obtain

d

dt
E[yni ] =

∫
Rm

yni

(
m∑
j=1

(
− ∂

∂yj
{DjP (y, t)}+

1

2
Aj

+(α(t))
∂2

∂yj2
{P (y, t)}

))
dy (3.29)

=
m∑
j=1

− ∫
Rm

yni
∂

∂yj
{DjP (y, t)} dy +

Aj
+(α(t))

2

∫
Rm

yni
∂2

∂yj2
{P (y, t)}dy

 (3.30)

We will evaluate the integrals on the RHS of (3.30) using integration by parts. Recall that
for any two functions u and v defined on a domain Ω, the general formula for integration by
parts is given by: ∫

Ω

∂u

∂xi
vdx = −

∫
Ω

u
∂v

∂xi
dx+

∫
∂Ω

uvγidS(x) (3.31)

where ∂Ω is the boundary of Ω, dS is the surface element of this boundary, and γi is the
ith component of the unit outward normal to the boundary. In our case, we have Ω = Rm,
and thus the boundary conditions are evaluated as ∥y∥ → ∞. I assume that the magnitude
of stochastic fluctuations is bounded, and therefore impose the condition lim

∥y∥→∞
P (y, t) = 0.

Further, I assume that this decay is fast enough that lim
∥y∥→∞

DjP (y, t) = 0 ∀ j. Under these

conditions, we can evaluate the two integrals in the RHS of (3.30) by using integration by
parts and discarding the boundary term (The second term on the RHS of (3.31)). Note that
since the yis are orthogonal to each other, we have the relation:

∂yni
∂yj

= δijny
n−1
i

Using this relation and then using integration by parts on the RHS of (3.30) (once for the
first term and twice for the second term), we obtain the considerably simpler expression

d

dt
E[yni ] = n

∫
Rm

yn−1
i DiP (y, t)dy +

n(n− 1)

2
A+

i (α(t))

∫
Rm

yn−2
i P (y, t)dy (3.32)

⇒ d

dt
E[yni ] = nE[yn−1

i Di] +
n(n− 1)

2
A+

i (α(t))E[yn−2
i ] (3.33)

Of particular interest are the cases n = 1 (corresponding to the expected value of yi) and
n = 2 (which can be used along with the expected value to compute the variance of yi). We
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have:

d

dt
E[yi] = E[Di] (3.34)

d

dt
E[y2i ] = 2E[yiDi] + A+

i (α(t)) = 2⟨yi, Di⟩+ 2E[yi]E[Di] + A+
i (α(t)) (3.35)

Where ⟨X, Y ⟩ is the probability covariance between two random variables X and Y , defined
as ⟨X, Y ⟩ := E[XY ]− E[X]E[Y ]. This is not to be confused with the statistical covariance
defined by (3.13) that appears in the deterministic Price equation (3.21). Thus, whether
stochastic fluctuations are expected to grow or decay is controlled by Di, a measure of how
the growth rate (bi − di) changes along the direction of the fluctuation, whereas the spread of
the fluctuations (the variance) has contributions from the net turnover rate (A+

i = bi + di)
and the (probability) covariance between the fluctuation and Di. In the case of the functional
forms given by (3.10), we have:

A−
i (x) = wi(x)xi + µQi(x) (3.36)

and thus, from (3.24), we can calculate the directional derivative Di as

Di =
m∑
k=1

yk

(
∂A−

i (x)

∂xk

∣∣∣∣
x=α(t)

)
(3.37)

=
m∑
k=1

yk

(
∂

∂xk
(wi(x)xi + µQi(x))

∣∣∣∣
x=α(t)

)
(3.38)

=
m∑
k=1

yk

(
αi
∂wi

∂xk

∣∣∣∣
x=α(t)

)
+ yiwi(α) + µ

m∑
k=1

yk

(
∂Qi

∂xk
(x)

∣∣∣∣
x=α(t)

)
(3.39)

= yiwi(α) + αiDy(wi(α)) + µDy(Qi(α)) (3.40)

Using this in (3.34), we see that the expected change of a fluctuation in the density of type i
individuals evolves as:

d

dt
E[yi] = wi(α)E[yi]︸ ︷︷ ︸

Current fitness of type i
at deterministic trajectory α

(scaled by expected fluctuation E[yi])

+ αiE[Dy(wi(α))]︸ ︷︷ ︸
Expected change in fitness

of type i in going from α to y
(scaled by deterministic density αi)

+µE[Dy(Qi(α))]︸ ︷︷ ︸
Expected effect of

mutations

(3.41)

Thus, the expected behavior of fluctuations in the weak noise limit is controlled purely by
fitness differences and mutational effects. If E[yi] ≡ 0 ∀ i is a stable fixed point for the system
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of equations defined by (3.41), then stochastic fluctuations are expected to decay, meaning
that the deterministic point α is a stable configuration for the complete dynamics when
fluctuations are weak. In the case of 2-strategy matrix games (i.e. when m = 2 and the
fitness functions wi(p) are of the form wi =

∑
j aijpj for some constants aij), it has been

shown that E[yi] ≡ 0 ∀ i is a stable fixed point for (3.41) if and only if the population state α

is an evolutionarily stable strategy (ESS) for the determinstic game defined by (3.16) (which
of course reduces to the replicator dynamics defined by (3.17)), thus recovering a stochastic
version of a classic result in evolutionary game theory (Tao and Cressman, 2007).
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Chapter 4

Stochastic field equations for the evolution
of quantitative traits

The result has been forty years of bewil-
derment about what he meant, whereas
if he had been willing to make a slight
sacrifice of strict mathematical propriety
(as I have done) he could have expressed
himself in a way that everyone would
have understood

George Price (1972), speaking about
Fisher

So far, we have dealt with populations in which individuals come in countably many
different kinds. While developing these models, we have been on mathematically solid ground
that is well understood by statistical physicists and mathematicians. However, things become
more complicated when we deal with ‘quantitative’ traits. Traits like body size, body weight,
or beak length, often take on uncountably many values (say, all values in the interval [0, 1],
for example). In this case, we cannot describe the population using a vector as we did
before, but instead require a function. More precisely, if the set of all possible trait values
is T , we will characterize the population using a special kind of function ϕ(t) such that the

49
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quantity
∫
A
ϕ(t)(x)dx gives us the number of individuals that are in any ‘nice’ region A ⊂ T

of the possible trait space1 at time t. The state space of the stochastic process thus becomes
infinite-dimensional, which complicates matters slightly. The principal objects of interest
here are functionals F [x, ϕ(t)] which take in a scalar x representing the trait value of interest,
and a function ϕ(t) representing the population at time t. Thus, whereas in the previous
section we were interested in how a function f(x(t)) changes based on the change in an input
variable x(t) (the population), we are now interested in how a functional F [ϕ(t)] changes with
the change in an input function ϕ(t).

The mathematics for these sorts of processes is an active area of research and is com-
paratively far from well developed. The mathematically rigorous formulation of the kinds
of processes I study here falls in the realm of measure-valued branching processes, and is
highly technical and rather inaccessible unless one is already comfortable with advanced
measure-theoretic notions (Champagnat et al., 2006; Champagnat et al., 2008). This means
that the existing formalism, while admirable in its generality and mathematical rigor, is
rather unusable for most biologists, who do not have formal training in analysis (but see Week
et al. (2021) for a very friendly introduction to the major ideas through heuristics). One
can, however, make progress if they are willing to take some mathematical leaps of faith and
sacrifice rigor for the sake of accessibility and heuristic understanding. I adopt this attitude
below and hope that all questions of well-posedness, existence, etc. will be sorted out by
some clever mathematicians in the future.

Physicists use the term ‘field’ for functions of the form f(x, t) : Rn × [0,∞) → Rm, where
Rn represents space and [0,∞) represents time. They then call models which describe such
functions ‘field theories’. In physics jargon, the stochastic process I will formulate when
viewed as a sequence of functions thus describes a (scalar) ‘stochastic field’, and the formalism

1The mathematically informed reader may notice that this sounds like I am trying to dance around the
word ‘measure’. Indeed, we are really looking to construct branching processes that take values in some nice
space of measures that can be endowed with sufficient mathematical structure for notions like convergence and
integration to make sense and are absolutely continuous with respect to the Lebesgue measure. All the Dirac
deltas that will turn up shortly are ‘properly’ viewed as measures, integrals with Dirac deltas in the integrand
are ‘properly’ interpreted as integration with respect to the Dirac measure, and the functional derivative is to
be ‘properly’ interpreted as a Gateaux or Fréchet derivative assuming that the relevant function space has
enough structure for these notions to make sense. If one tries to be careful about these things, they will quickly
find themselves drowning in a quagmire of mathematical formalism. If you know and care about enough
mathematics for this to really bother you, see Champagnat et al. (2006) or Champagnat et al. (2008) for a
much more rigorous treatment that avoids using informal tools such as functional derivatives and functional
equivalents of Fokker-Planck equations in favor of a probabilistic approach grounded in (measure-theoretic)
Markov and martingale theory.
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I will develop below is a ‘stochastic field theory’ of evolution, where physical space has been
replaced by an abstract trait space. This is closely related to the area of physics called
‘statistical field theory’, the analog of quantum field theory for systems with a large number
of classical particles. Stochastic field theories over physical space have recently been used in
biology to model brain function (Bressloff, 2010) and collective motion (Ó Laighléis et al.,
2018).

In the following sections, I will rely heavily on a heuristic object called the functional
derivative δF/δϕ. The functional derivative is an ad hoc, somewhat informal notion, defined
indirectly as the unique object that obeys, for any ‘nice’ function ρ∫

δF

δϕ(x)
ρ(x)dx = lim

h→0

F [ϕ+ hρ]− F [ϕ]

h
(4.1)

This definition is formulated in analogy to directional derivatives in multi-variable calculus:
Noting that a function can be thought of as an infinite-dimensional vector, informally ‘taking
the limit’ m→ ∞ in (3.25) yields (4.1).

4.1 Description of the process and the Master Equation

We envision a population of individuals with a ‘trait’ that takes values in some one-
dimensional set T ⊆ R. Since the trait of any given individual is fixed, and since each
individual can only have one exact trait value, an individual with a trait value x ∈ T can
be characterized as a Dirac delta mass centered at x, defined indirectly as the object which
satisfies, for any one-dimensional function f ,

∫
A

f(y)δxi
dy =

f(xi) xi ∈ A

0 xi /∈ A

for every subset A ⊂ T . The Dirac mass is often written δxi
= δ(y − xi) as a ‘function’ of

a dummy variable y which will be integrated over, since in this view the Dirac mass is a
‘function’ that can only occur inside an integral. Though I will indeed (kind of) use the
Dirac mass as a function, I will stick to the notation δxi

because it emphasizes that δxi
is

supposed to represent an individual with a trait value of xi (the dummy variable y can be
confusing in this regard). Note that by choosing f(x) ≡ 1, we get an ‘indicator’ that is 1 if
the individual is within the set A and 0 otherwise. If the population at any time t consists of
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N(t) individuals with trait values {x1, x2, . . . , xN(t)}, then it can be completely characterized
(Figure 4.1) by the ‘distribution’

ν(t) =

N(t)∑
i=1

δxi

which in physics notation would be a function ν(t)(y) =
∑N(t)

i=1 δ(y − xi). Thus, the state
space of our process is

M(T ) =

{
n∑

i=1

δxi
| n ∈ N, xi ∈ T

}
Note that for any set A ⊂ T ,

∫
A
ν(t)dx gives the number of individuals that have trait

values that lie within the set A and that integrating over T gives the population size
N(t) at time t. Given the population ν(t) =

∑N(t)
i=1 δxi

and a real function f(x), we have∫
T f(y)ν

(t)dy =
∑N(t)

i=1 f(xi). Now that we have described the population, we must define
the rules for how it changes. I will do this through two non-negative functionals b(x|ν) and
d(x|ν) from T ×M(T ) to [0,∞) that describe the rate at which individuals with trait value
x are born and die respectively in a population ν. Again, we must be careful about what
exactly we mean when we speak about ‘rates’. In this case, I mean that if we know that
the population is currently described by the function ν, and we know that either a birth
or a death occurs, then the probability that this event is the birth of an individual whose
phenotype is within the set A ⊂ T is given by

P
[

Birth with offspring in A
∣∣ something happened

]
=

1

N

∫
A

b(x|ν)dx

and the probability that the event is the death of an individual whose phenotype is within
the set A is

P
[

Death of an individual in A
∣∣ something happened

]
=

1

N

∫
A

d(x|ν)dx

where N =
∫
T b(x|ν) + d(x|ν)dx is the normalizing constant in both cases. Note that we

assume N is always finite and non-zero.
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Figure 4.1: Schematic description of a function valued birth-death process.
Consider a population of birds in which individuals have varying beak lengths. (A) Each
individual in the population can be described as a Dirac delta mass centered at its beak
length. This is because each individual has exactly one fixed beak length, and therefore, can
be thought of as a distribution centered at that particular beak length and with zero spread.
(B) The population as a whole is thus described as a sum of Dirac masses. N(t) here is the
size of the population at time t. Birth and death of individuals would correspond to the
addition and removal of Dirac masses respectively. Note that if we had a large number of
individuals, this distribution begins to look like a continuous distribution.

Example 2. Consider the birth and death functionals:

b(x|ν) = r

∫
T

m(x, y)ν(y)dy; m(x, y) = exp

(
−(x− y)2

σ2
m

)

d(x|ν) = ν(x)

Kn(x)

∫
T

α(x, y)ν(y)dy; α(x, y) = exp

(
−(x− y)2

σ2
α

) (4.2)

This choice corresponds to an asexual population having a constant (per-capita) birth rate r.
Birth is sometimes with mutation, and the extent of the mutations is controlled by a Gaussian
kernel m(x, y). The death rate is density-dependent, mediated by a Gaussian competition
kernel α(x, y), and also contains a phenotype-dependent carrying capacity controlled by
n(x), scaled by a constant K. The biological interpretation of the death rate is through
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ecological specialization for limiting resources - individuals have different intrinsic advantages
(controlled by n(x)), and experience greater competition from conspecifics that are closer to
them in phenotype space (controlled by α(x, y)).

Let us now define, for each x ∈ T , two step operators E±
x that satisfy

E±
x [f(y, ν)] = f(y, ν ± δx)

In other words, the step operators E±
x simply describe the effect of adding or removing a single

individual with trait value x from the population. We will assume that our process is nice
enough that we can find a function P (ν, t) such that the probability that the process takes
value ν(t) at time t is given by2

∫
T P (ν, t)dx. In one dimension, this is often automatically

satisfied for biologically reasonable choices of the birth and death functionals (Dawson, 1975;
Walsh, 1986; Konno and Shiga, 1988; Reimers, 1989; Dawson et al., 2000; Also see section
2.3 in Etheridge, 2000 and proposition 3.1 in Champagnat et al., 2008).

We can now use the same trick as in chapter 3 and obtain a master equation by counting
inflow and outflow of states. Any change to a state must be through the addition or subtraction
of a single individual (now a single Dirac mass). For any state ν ∈ M(T ), the transition rate
from ν − δx to ν is simply E−

x b(x|ν), and similarly, the transition rate from ν + δx to ν is
E+
x d(x|ν). The transition rate out of ν to a state ν + δx is just b(x|ν), and transition out to a

state ν − δx is just d(x|ν). Thus, integrating over all possible x to obtain the total inflow and

2If you know some measure theory, note that this amounts to saying the following (I think?). Let
(M(T ),F , {Ft}t≥0,P) be the filtered probability space in which our adapted stochastic process {Xt}t≥0

lives. Let m be the Lebesgue measure on (T ,B(T )). Then, we require P(Xt ≪ m ∀ t) = 1, i.e. we
need the process to be [P]-a.s. absolutely continuous with respect to the Lebesgue measure for all time.
Since each ν ∈ M(T ) is a finite measure, it is obviously σ-finite, and we can now thus use the Radon-
Nikodym theorem to find a density function Rm(x, t) such that for any t ≥ 0 and any B ∈ B(T ), we have
Xt(B) =

∫
B
Rm(x, t)dm [P]-a.s.. We also require being able to find a second function QP(ν, t) on F × [0,∞)

such that we can write P(Xt = ν) =
∫
T QP(ν, t)ν(dx). The function QP(ν, t) is similar to a density function and

thus essentially amounts to another absolute continuity condition, except on the stochastic process itself (and
thus the measure P defined on F ) rather than on the elements of its state space (i.e. the measures ν ∈ M(T ),
which are defined on T ). We can now use the [P]-a.s. assured absolute continuity with respect to the Lebesgue
measure of any measure ν attained by our process Xt to write

∫
T QP(ν, t)ν(dx) =

∫
T QP(ν, t)Rm(x, t)dm.

Changing notation from dm to dx to revert to the usual abuse of notation for integration with respect to
the Lebesgue measure, we can now define P (ν, t)dx := QP(ν, t)Rm(x, t)dx. This allows us finally to write
P(Xt = ν) =

∫
T P (ν, t)dx as desired.
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outflow rate for a state ν, we see that P (ν, t) must satisfy:

∂P

∂t
(ν, t) =

∫
T

[
(E−

x − 1)b(x|ν)P (ν, t) + (E+
x − 1)d(x|ν)P (ν, t)

]
dx (4.3)

This is the master equation of our infinite-dimensional process.

4.2 The functional system-size expansion

To proceed, as before, I assume that there exists a system-size parameter K > 0 such
the total population size is controlled by K, with K = ∞ corresponding to an infinitely
large population. This allows us to obtain a new process {ϕ(t)}t≥0 such that for any set
A ⊂ T ,

∫
A
ϕ(t)dx gives the ‘density’ of individuals that have trait values that lie within the

set A. Note that we expect this stochastic process to evolve continuously if K is large since
the contribution of each individual is negligible. Specifically, I assume we can make the
substitutions:

ϕ(t) :=
1

K
ν(t) =

1

K

N(t)∑
i=1

δxi

bK(x|ϕ(t)) :=
1

K
b(x|ν(t))

dK(x|ϕ(t)) :=
1

K
d(x|ν(t))

{ϕ(t)}t≥0 takes values in

MK(T ) :=

{
1

K

n∑
i=1

δxi
| n ∈ N, xi ∈ T

}

In terms of these new variables, we obtain the master equation:

∂P

∂t
(ϕ, t) = K

∫
T

[
(∆−

x − 1)bK(x|ϕ)P (ϕ, t) + (∆+
x − 1)dK(x|ϕ)P (ϕ, t)

]
dx (4.4)

where I have introduced new step operators ∆±
x that satisfy:

∆±
x [F (y, ϕ)] = F

(
y, ϕ± 1

K
δx

)
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We can now conduct a system-size expansion as before by using a functional ‘Taylor
expansion’ of the step operators. Recall that the functional version of the Taylor expansion
of a functional F [ρ] about a function ρ0 defined on a domain Ω ⊆ R is given by:

F [ρ0 + ρ] = F [ρ0] +

∫
Ω

ρ(x)
δF

δρ0(x)
dx+

1

2!

∫
Ω

∫
Ω

ρ(x)ρ(y)
δ2F

δρ0(x)δρ0(y)
dxdy + · · ·

Since ∆±
x [F [ϕ]] = F [ϕ± δx/K], we can Taylor expand the RHS to see that our step operators

obey

∆±
x [F [ϕ]] = F [ϕ]± 1

K

∫
T

δF

δϕ(y)
δxdy +

1

2K2

∫
T

∫
T

δ2F

δϕ(y)δϕ(z)
δxdyδxdz +O(K−3)

= F [ϕ]± 1

K

δF

δϕ(x)
+

1

2K2

δ2F

δϕ(x)2
+O(K−3) (4.5)

Neglecting terms of O(K−3), we can now substitute (4.5) into (4.4) to obtain:

∂P

∂t
(ϕ, t) = K

∫
T

[(
− 1

K

δ

δϕ(x)
+

1

2K2

δ2

δϕ(x)2

)
{bK(x|ϕ)P (ϕ, t)}

]
dx

+K

∫
T

[(
1

K

δ

δϕ(x)
+

1

2K2

δ2

δϕ2(x)

)
{dK(x|ϕ)P (ϕ, t)}

]
dx

Rearranging these terms, we obtain a ‘functional Fokker-Planck equation’:

∂P

∂t
(ϕ, t) =

∫
T

[
− δ

δϕ(x)
{A−(x|ϕ)P (ϕ, t)}+ 1

2K

δ2

δϕ(x)2
{A+(x|ϕ)P (ϕ, t)}

]
dx (4.6)

where

A±(x|ϕ) = bK(x|ϕ)± dK(x|ϕ) =
1

K
(b(x|ν)± d(x|ν))

Equation (4.6) constitutes the ‘mesoscopic’ description of our process. We can once again
appeal to the link between Fokker-Planck equations and Itô processes to say that (4.6)
corresponds to the SPDE:

∂ϕ

∂t
(x, t) = A−(x|ϕ) +

√
A+(x|ϕ)

K
Ẇ (x, t) (4.7)
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where Ẇ (x, t) is the so-called ‘spacetime white noise’ process. If one wishes to be mathe-
matically careful, the connection between (4.6) and (4.7) becomes somewhat tenuous. In
particular, while the equivalence between Fokker-Planck equations and SDEs (Langevin
equations) for finite-dimensional stochastic processes is part of the standard mathematical
canon, the corresponding equivalence is much less well understood for the infinite-dimensional
measure-valued processes we are dealing with - we may need MK(T ) to have a considerable
amount of structure (Ex: seperable Hilbert space) for things to work out (Da Prato and
Zabczyk, 2014; Balan, 2018), and I do not know whether our domain is nice enough. For
example, it is not immediately clear what conditions on A±(x|ϕ) are needed for (4.7) to even
admit a solution. Nevertheless, as I show below, we can recover some well-known deterministic
equations from equation (4.7) in the infinite population limit, illustrating consistency with
known models. Under certain assumptions on the domain MK(T ) and the birth-death
operators A±, equivalences between functional Fokker-Planck equations and SPDEs are
rigorously studied and understood (See chapter 10 in Bogachev et al., 2015).

4.3 The infinite population limit

Taking K → ∞ in equation (4.7) yields a PDE:

∂ψ

∂t
(x, t) = A− (x|ψ) = bK(x|ψ)− dK(x|ψ) (4.8)

where I have used a different symbol ψ simply to highlight that ψ(x, t) as the solution to
equation (4.8) is a deterministic function, whereas ϕ(x, t) as defined in equation (4.7) is really
a stochastic process {ϕ(t)}t≥0 in which each ϕ(t) is a finite measure. Equation (4.8) simply
says that in the absence of stochasticity, the change in the density of individuals with trait
values x is given by the difference between the birth and death rates of these individuals
in the population. Models of this form are precisely the ‘PDE models’ discussed in studies
of Adaptive Diversification (Doebeli, 2011). Equation (4.8) is also the basic equation of
‘oligomorphic dynamics’ (Sasaki and Dieckmann, 2011; Lion et al., 2022) if one assumes the

population is composed of a small number of ‘morphs’, i.e. ψ(x, t) =
S∑

k=1

nk(t)ψk(x, t), where

nk ≥ 0 is the abundance of the kth morph, ψk(x, t) is the phenotypic distribution of the
kth morph (often assumed a normal distribution with narrow variance) and S is the total
number of distinct morphs in the population. Models of the form (4.8) are also used to study
intraspecific trait variation in community ecology (Nordbotten et al., 2020). A prominent
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recent example is Wickman et al.’s (2022) ‘trait space equations’ in their framework for
eco-evolutionary community dynamics.

As before, I assume that the birth and death functions take the form:

bK(x|ψ) = ψ(x, t)b(ind)(x|ψ) + µQ(x|ψ)
dK(x|ψ) = ψ(x, t)d(ind)(x|ψ)

(4.9)

As in chapter 3, Q(x|ψ) describes birth due to mutations and µ ≥ 0 is a constant mutation
rate. The functions b(ind)(x|ψ) and d(ind)(x|ψ) describe the per-capita birth rate and death
rate of type x individuals in a population ψ. These functions could in principle model several
ecological factors. For example, b(ind)(x|ψ) may incorporate the effects of mate choice in the
sexual case or intrinsic duplication rates in the asexual case, and d(ind)(x|ψ) may model death
due to intraspecific competition for resources. Note that the definition of the mean value
(3.12) of a type level quantity f(x) now becomes

f(t) =

∫
T

f(x)p(x, t)dx

Substituting equation (4.9) into (4.8), we obtain

∂ψ

∂t
(x, t) = w(x|ψ)ψ(x, t) + µQ(x|ψ) (4.10)

where I have defined w(x|ψ) := b(ind)(x|ψ) − d(ind)(x|ψ), the (Malthusian) ‘fitness’ of the
phenotype x. To track population numbers and trait frequencies, let us define as before, the
scaled population size and trait frequency as

NK(t) :=

∫
T

ψ(x, t)dx =
1

K

∫
T

ν(x, t)dx

p(x, t) :=
ψ(x, t)

NK(t)
=

ν(x, t)∫
T
ν(y, t)dy

(4.11)

The population mean fitness is:

w(t) =

∫
T

w(x|ψ)p(x, t)dx (4.12)
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Using the chain rule in the definition of p(x, t), we can calculate:

∂p

∂t
=

1

NK(t)

∂ψ

∂t
(x, t)− ψ(x, t)

N2
K(t)

dNK

dt

=
1

NK(t)

∂ψ

∂t
(x, t)− ψ(x, t)

N2
K(t)

∫
T

∂ψ

∂t
(y, t)dy

Where I have used the definition of NK(t) and assumed that integrals and derivatives commute
in the second line. Substituting (4.10), we now obtain

∂p

∂t
=

1

NK(t)
[w(x|ψ)ψ(x, t) + µQ(x|ψ)]− ψ(x, t)

N2
K(t)

∫
T

w(y|ψ)ψ(y, t) + µQ(y|ψ)dy

= w(x|ψ)p(x, t) + µ

NK(t)
Q(x|ψ)− p(x, t)

∫
T

w(y|ψ)p(y, t)dy + µ

NK(t)

∫
T

Q(y|ψ)dy


where I have used the definition of p(x, t) in the second line. Using (4.12) and rearranging
the terms gives us:

∂p

∂t
(x, t) = [w(x|ψ)− w(t)] p(x, t) +

µ

NK(t)

Q(x|ψ)− p(x, t)

∫
T

Q(y|ψ)dy

 (4.13)

This is a version of the replicator-mutator equation for continuous strategy spaces when each
x is viewed as a strategy (Cressman and Tao, 2014).

Equation (4.13) also recovers Kimura’s (1965) continuum-of-alleles model when each x is
viewed as an allele, Q(x|ψ) takes the form of a convolution of ψ(x, t) with a mutation kernel,
and the trait space is the entire real line, i.e. T = R. To see this, let Q(y|ψ) =

∫
R
m(y −

z)ψ(z, t)dz, where m : R → [0,∞) is a mutation kernel, which by definition is normalized
such that

∫
R
m(x)dx = 1. Let us further note that I have implicitly been assuming3 that even

though the total number of individuals
∫
ν(x)dx→ ∞ as K → ∞, the scaled population size

NK =
∫
ν(x)dx/K remains finite at all times, i.e. NK(t) =

∫
R
ψ(x, t)dx <∞ ∀ t. Thus, for

3This actually need not be an assumption, and can be derived as a theorem under biologically reasonable
conditions on the birth/death functionals upon taking the rigorous approach to both the system size
expansion (rescaling) and the infinite population limit. See, for example, Etheridge (2000) or proposition 4.1
in Champagnat et al. (2008)
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any fixed t > 0, we have

∫
R

∫
R

|m(y − z)ψ(z, t)|dydz =
∫
R

∫
R

|m(y − z)|dy

 |ψ(z, t)|dz

=

∫
R

|m(x)|dx

∫
R

|ψ(z, t)|dz

 <∞

We can therefore conclude that m(y − z)ψ(z, t) ∈ L1(R× R) for any given t > 0, meaning
we can use the Fubini-Tonnelli theorem to interchange the order of integration of iterated
integrals of m(y − z)ψ(y). We are now ready to evaluate the rightmost integral of (4.13).

We have: ∫
R

Q(y|ψ)dy =

∫
R

∫
R

m(y − z)ψ(z, t)dzdy

=

∫
R

∫
R

m(y − z)ψ(z, t)dydz

=

∫
R

ψ(z, t)

∫
R

m(y − z)dy

 dz

=

∫
R

ψ(z, t)

∫
R

m(u)dudz

=

∫
R

ψ(z, t)dz

∫
R

m(u)du

= NK(t)

∫
R

m(u)du (4.14)

where I have used the Fubini-Tonnelli theorem to go from the first step to the second,
and have made the substitution u = y − z to go from the third to the fourth step. We
then note that since m is a kernel, it satisfies

∫
R
m(u)du = 1, and (4.14) therefore becomes∫

R
Q(y|ψ)dy = NK(t). Substituting this in (4.13), we have

∂p

∂t
(x, t) = [w(x|ψ)− w(t)] p(x, t) +

µ

NK(t)

∫
R

m(x− z)ψ(z, t)dz − p(x, t)NK(t)
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Substituting our definition p(z, t) = ψ(z, t)/NK(t) now yields

∂p

∂t
(x, t) = [w(x|ψ)− w(t)] p(x, t) + µ

∫
R

m(x− z)p(z, t)dz − p(x, t)

 (4.15)

which is Kimura’s continuum of alleles model (Kimura, 1965; Crow and Kimura, 1970).

We can now use the same trick we used in deriving (3.20) from (3.17). By multiplying
both sides of equation (4.13) by a type level quantity4 f(x, t) and integrating over the trait
space, we obtain

df

dt
=

∫
T

f(x, t)w(x|ψ)p(x, t)dx− w(t)

∫
T

f(x, t)p(x, t)dx

+
µ

NK(t)

∫
T

f(x, t)

Q(x|ψ)− p(x, t)

∫
T

Q(y|ψ)dy

 dx
= fw − w · f +

µ

NK(t)

∫
T

f(x, t)

Q(x|ψ)− p(x, t)

∫
T

Q(y|ψ)dy

 dx (4.16)

We now observe that
Cov(f, w(x|ψ)) = fw − f · w (4.17)

is the statistical covariance of the quantity f with the Malthusian fitness function. The
second term, which I will denote by

Mf (x|ψ) :=
µ

NK(t)

∫
T

f(x, t)Q(x|ψ)dx−

f ∫
T

Q(x|ψ)dx

 (4.18)

reflects the transmission bias of mutations. Thus, we see that equation (4.16) reads

df

dt
= Cov(f, w(x|ψ)) +Mf (x|ψ) +

(
∂f

∂t

)
(4.19)

4This is now a real function f(x, t) : T × [0,∞) → R of two variables, the trait value and time. I assume
this function is nice enough for all the below operations to make sense
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from which it is clear that we have obtained a version of the Price equation (3.20) for
quantitative traits (Note that (4.19) is precisely the equation obtained by informally taking
m→ ∞ in (3.20)). For the special case f(x) = x, we have ∂f/∂t = 0 and thus:

dx

dt
= Cov(x,w(x|ψ)) +Mx(x|ψ) (4.20)

We can also recover some more familiar dynamics under the following additional assumptions:

• Rare mutations, i.e. µ→ 0.

• Small mutational effects with ‘almost faithful’ reproduction, meaning Q(x|ψ) → 0, and
the distribution ψ(x, t) tends to stay very ‘sharp’ (i.e strongly peaked about its mean
value).

• Separation of ecological and evolutionary timescales, meaning that the system is always
at ecological equilibrium. Thus, the expected rate of change of resident numbers in a
resident population is 0, and we have w(y|δy(t)) = 0.

Under these assumptions, if we supply an initial condition ψ(x, 0) = NK(0)δy0 for some
constants NK(0) > 0 and y0 ∈ T (meaning we start with a completely monomorphic
population of size NK(0) in which all individuals have trait value y0), it is reasonable to
assume that the population remains sufficiently well clustered for some (possibly small) time
t > 0 that we can continue to approximate the distribution ψ(x, t) as a Dirac Delta mass
NK(t)δy(t) that is moving across the trait space in a deterministic manner dictated by a
function y(t) (to be found). Note that we have p(x, t) = δy(t), x(t) = y(t), and w(t) = 0.
Thus, from equation (4.20), we have

dx

dt
=

∫
T

(x− x(t))(w(x|ψ)− w(t))p(x, t)dx

⇒ dy

dt
=

∫
T

(x− x(t))w
(
x|NKδy(t)

)
δy(t)dx (4.21)

Our assumptions on mutation rate and mutational effects imply that the population will
be concentrated in an infinitesimal neighborhood around the mean value y(t) (i.e that the
distribution of traits in the population is sharply peaked). We can thus Taylor expand
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w
(
x|NKδy(t)

)
about y(t) as:

w(x|NKδy(t)) = w(y|NKδy(t))︸ ︷︷ ︸
=0

+(x− y(t))
d

dz
w
(
z|NKδy(t)

) ∣∣∣∣
z=y

+ . . .

Thus, substituting in (4.21), to first order, we obtain

dy

dt
=

∫
T

(x− x(t))2p(x, t)dx

 d

dz
w
(
z|NKδy(t)

) ∣∣∣∣
z=y

where I have used x(t) = y(t). We can define the shorthand B(y) =
∫
T
(x− y(t))2p(x, t)dx =∫

T
(x− x(t))2p(x, t)dx to obtain:

dy

dt
= B(y)

(
d

dz
w
(
z|NKδy(t)

) ∣∣∣∣
z=y

)
(4.22)

Note that by the definition of statistical variance, the function B(y(t)) is numerically equal to
σ2
x(t), the statistical variance of the trait in the population at time t. The term w

(
z|NKδy(t)

)
is the expected growth rate of an individual with trait value z in a population of size NK in
which (almost) every individual has trait value y. This quantity is referred to as the ‘invasion
fitness’ of a ‘mutant’ trait z in a population of ‘resident’ y individuals. Equation (4.22) is the
canonical form of a broad class of systems called ‘gradient equations’ or ‘gradient dynamics’
in quantitative genetics (Lande, 1982; Abrams et al., 1993; Lehtonen, 2018; Lion, 2018), and
captures the approximate evolutionary dynamics of quantitative traits under certain mutation
limits. It is also deeply related (Lehtonen, 2018; Lion, 2018) to the canonical equation of
adaptive dynamics first formulated in Dieckmann and Law (1996). The major difference is
that in the ‘proper’ canonical equation of adaptive dynamics (as formulated in Dieckmann
and Law (1996)), the function B(y) explicitly relies on mutations as a continual source of
variation, whereas in gradient dynamics and our equation (4.22), B(y) = σ2

x(t) captures the
standing genetic variation in the population but does not specify the source of this variation.
Note that strictly speaking, if ψ(x, t) = δy(t) exactly, then B(y) ≡ 0. This just reflects our
assumption that mutations are vanishingly rare and mutants are sampled from infinitesimally
close to the resident value. More detailed mathematical arguments are required to ensure
that this convergence ‘makes sense’ and that B(y) does not actually equal 0. This has been
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proved rigorously using much more sophisticated mathematical tools grounded in martingale
theory (Champagnat et al., 2006). A heuristic derivation of the canonical equation of adaptive
dynamics is provided in the classic article by Dieckmann and Law (1996).

4.4 Stochastic trait frequency dynamics in the infinite-

dimensional case

In chapter 3, I also derived SDEs for the trait frequency dynamics of the complete
stochastic case using Itô’s formula. Doing the same for quantitative traits in our framework
is tricky because it requires us to find a version of Itô’s formula that holds for SPDEs of the
form (4.7). The formulation of Itô formulas and/or an infinite-dimensional stochastic calculus
for general function (measure) valued stochastic processes is an active area of research in
pure mathematics (Da Prato and Zabczyk, 2014), and without further information on the
nature of the domain MK(T ), it is not clear (to me at least) whether an Itô’s formula exists
for our case in general. However, it bears noting that the ‘intuitive’ Itô’s formula one would
expect does indeed hold true for broad classes of Hilbert space valued processes (Prévôt and
Röckner, 2007; Da Prato and Zabczyk, 2014; Liu and Röckner, 2015). If A±(x|ϕ) in (4.6)
are Gaussian functions, then it has been proven (Week et al., 2021) that the SDEs ‘work as
expected’ if we take m→ ∞ in (3.14) (see section 5.1 in chapter 5). However, carrying out a
general derivation is beyond the scope of this thesis.

4.5 Stochastic fluctuations and the weak noise approxi-

mation

We can also formally carry out a functional analogue of the weak noise expansion as we
did in chapter 3. Assume that ψ(x, t) is the deterministic trajectory obtained as the solution
to (4.8). We introduce a new process {ζ(s)}s≥0 which measures the fluctuations of ϕ(t) from
the deterministic trajectory ψ(x, t). More precisely, let us introduce the new variables:

ζ(s)(x) =
√
K(ϕ(t)(x)− ψ(x, t))

s = t

P̃ (ζ, s) =
1√
K
P (ϕ, t)

(4.23)
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Note that the following relations hold:

δF [ζ]

δϕ(x)
=

∫
T

δF [ζ]

δζ(y)

δζ(y)

δϕ(x)
dy =

√
K
δF [ζ]

δζ(x)
(4.24)

∂

∂s
=

∂

∂t
(4.25)

Furthermore, for any ζ ∈ MK(T ), we have:

∂P̃

∂t
(ζ, s) =

δP̃

δζ

∂ζ

∂t
+
∂P̃

∂s

∂s

∂t

=
δP̃

δζ

(
−
√
K
∂ψ

∂t

)
+
∂P̃

∂s

= −
√
K
δ

δζ
{A−(x|ψ)P̃ (ζ, s)}+ ∂P̃

∂s
(4.26)

Reformulating equation (4.6) in terms of the new variables (4.23) and using the relations
(4.24), (4.25) and (4.26), we obtain:

−
√
K

δ

δζ(x)
{A−(x|ψ)P̃ (ζ, s)}+ ∂P̃

∂s
=

∫
T

[
−
(√

K
δ

δζ(x)

)
{A−

(
x

∣∣∣∣ψ +
ζ√
K

)
P̃ (ζ, s)}

]
dx

+

∫
T

[
1

2K

(
K

δ2

δζ(x)2

)
{A+

(
x

∣∣∣∣ψ +
ζ√
K

)
P̃ (ζ, s)}

]
dx

and rearranging gives us:

∂P̃

∂s
= −

√
K

∫
T

δ

δζ(x)

{(
A−
(
x

∣∣∣∣ψ +
ζ√
K

)
−A−(x|ψ)

)
P̃ (ζ, s)

}
dx

+
1

2

∫
T

δ2

δζ(x)2
{A+

(
x

∣∣∣∣ψ +
ζ√
K

)
P̃ (ζ, s)}dx

(4.27)

We will now Taylor expand our functionals about ψ (we assume that this is possible). Thus,
we have the expansions:

A−
(
x

∣∣∣∣ψ +
ζ√
K

)
= A− (x|ψ) + 1√

K

∫
T

ζ(y)
δ

δψ(y)
{A−(y|ψ)}dy + · · ·
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A+

(
x

∣∣∣∣ψ +
ζ√
K

)
= A+ (x|ψ) + 1√

K

∫
T

ζ(y)
δ

δψ(y)
{A+(y|ψ)}dy + · · ·

We also assume that P̃ can be expanded as

P̃ =
∞∑
n=0

P̃n

(
1√
K

)n

substituting these expansions into equation (4.27), equating coefficients of powers of 1/K,
and truncating at the lowest order term, we have:

∂P̃0

∂s
(ζ, s) =

∫
T

− δ

δζ(x)


∫
T

ζ(y)
δ

δψ(y)
{A−(y|ψ)}dyP̃0(ζ, s)

+
1

2
A+(x|ψ) δ2

δζ(x)2
{P̃0(ζ, s)}

 dx
We thus arrive at the functional Fokker-Planck equation:

∂P̃0

∂s
(ζ, s) =

∫
T

(
− δ

δζ(x)

{
Dζ [A−](x)P̃0(ζ, s)

}
+

1

2
A+(x|ψ) δ2

δζ(x)2
{P̃0(ζ, s)}

)
dx (4.28)

where
Dζ [A−](x) =

∫
T

ζ(y)
δ

δψ(y)
{A−(y|ψ)}dy =

d

dϵ
A−(x|ψ + ϵζ)

∣∣∣∣
ϵ=0

can be thought of now as the functional analogue of a directional derivative of A−(x|ψ) in
the direction of the ‘fluctuation’ ζ, now a function. In Appendix D, we will see how this
linear approximation can be used to study phenotypic clustering/evolutionary branching
using spectral methods first introduced for various specific models by Rogers et al. (2012a)
and further expanded upon in Rogers and McKane (2015).
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Chapter 5

A unified view of population dynamics

Not only is algebraic reasoning exact;
it imposes an exactness on the verbal
postulates made before algebra can start
which is usually lacking in the first verbal
formulations of scientific principles.

J.B.S. Haldane (1964)

So far, we have seen a lot of relatively abstract formalism for describing evolution in finite
populations. Some concrete and hopefully illustrative examples are also presented in Appendix
D. Have we gained anything from this (re)formulation? I show below that the stochastic
equation for trait frequencies I derived in part II naturally yields some ‘fundamental equations’
for evolutionary population dynamics that are very general, help us clearly understand how
evolution operates in finite fluctuating populations, and recover well-known results in the
infinite population limit, thus showing that I have generalized these infinite population results.
We will also see rigorous, quantitative formulations of some well-known ideas in evolutionary
biology, such as mutation as a ‘source’ of variation or drift causing continual erosion of
variation.
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5.1 Fundamental equations for evolution in finite popula-

tions

5.1.1 The fundamental equation for changes in type frequencies

Equation (3.14), which we derived in chapter 3, is a very general equation for how
frequencies change over time in stochastic populations. To recap, we started with a population
which can contain up to m different (fixed) types of individuals. The population as a whole is
characterized by a vector n(t) = [n1(t), . . . , nm(t)]

T indexing the number of individuals of each
type in the population. Changes of the population are through either birth or death of single
individuals. On ecological grounds, we postulated the existence of a ‘system-size’ parameter
K > 0 that leads to density-dependent growth and prevents the population from growing
infinitely large. We then moved from numbers n(t) to population densities x(t) = n/K

by assuming that birth and death rates depend on population densities x and not only on
population numbers n. In the regime where K is not too small (corresponding to ‘medium
sized’ populations), we found a continuous description of how x changes stochastically. We
further assumed that each type has a per-capita birth rate b(ind)(x), a per-capita death rate
d(ind)(x), and an additional term µQi(x) representing additional birth of type i individuals
due to mutations of other types. All three of these functions may in general vary in an
arbitrarily complicated frequency-dependent manner (or be frequency independent constants,
of course). We then moved from type densities x(t) to type frequencies p(t) and saw that
under these assumptions, pi, the frequency of the ith type in the population, obeys:

dpi(t) =

[
(wi(x)− w)pi + µ

{
Qi(p)− pi

(
m∑
j=1

Qj(p)

)}]
dt︸ ︷︷ ︸

Infinite population predictions: selection-mutation balance
for higher fitness

− 1

K

1

NK(t)

[
(τi(x)− τ)pi + µ

{
Qi(p)− pi

(
m∑
j=1

Qj(p)

)}]
dt︸ ︷︷ ︸

Directional noise-induced effects: selection-mutation balance
for lower turnover rates

+
1√

KNK(t)

[√
A+

i (x)dW
(i)
t − pi

m∑
j=1

√
A+

j (x)dW
(j)
t

]
︸ ︷︷ ︸

Non-directional noise-induced effects
due to stochastic fluctuations

(5.1)
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where NK =
∑
xi =

∑
ni/K is the total population size scaled by K (and thus KNK

is the total population size), wi(x) = b
(ind)
i (x) − d

(ind)
i (x) and τi(x) = b

(ind)
i (x) + d

(ind)
i (x)

are respectively the Malthusian fitness and per-capita turnover rate of the ith type, and
A+

i := xiτi(x) + µQi(x). Each W (i)
t is an independent one-dimensional Wiener process (Also

see equation (E.7) in Appendix E for a more elegant representation of this term as an
integral against a single Wiener process). Letting K → ∞ in (5.1) recovers the replicator-
mutator equation in the infinite population limit. The first term of (5.1) represents the
direct effects of forces captured in classic deterministic models, and reflects a selection-
mutation balance. However, finite populations experience a new directional force dependent
on τi(x), the per-capita turnover rate of type i, that cannot be captured in infinite population
models (Kuosmanen et al., 2022). Remarkably, this term acts in a way that is mathematically
identical to the classical action of selection and mutation in infinite population models as
captured by the first term in (5.1), but in the opposite direction - A higher relative τi leads
to a decrease in frequency (Notice the minus sign before the second term in (5.1)).

5.1.2 The fundamental equation for the mean value of a type-level

quantity

We can also calculate how the statistical mean value of any type-level quantity (see section
3.4) changes over time. Let f be any type level quantity, with value fi(t) ∈ R for the ith type.
I allow the value fi to possibly vary over time (for example, due to plasticity or a changing
environment). By multiplying both sides of equation (5.1) by fi and summing over all i (The
same steps as going from (3.17) to (3.20)), we see that the statistical mean f of the quantity
in the population varies as:

df = Cov(w, f)dt︸ ︷︷ ︸
Classical
selection

− 1

KNK(t)
Cov(τ, f)dt︸ ︷︷ ︸

Noise-induced
selection

+

(
∂f

∂t

)
dt︸ ︷︷ ︸

Ecological
feedbacks

+Mf (p, NK)dt︸ ︷︷ ︸
Mutational

effects

+
1√

KNK(t)
dWf︸ ︷︷ ︸

Stochastic
fluctuations

(5.2)
where all covariances are understood in the statistical sense (see section 3.4). Here,

Mf (p, NK) := µ

(
1− 1

KNK(t)

)( m∑
i=1

fiQi(p)− f

m∑
i=1

Qi(p)

)
(5.3)
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is a term capturing mutational effects/transmission fidelity that vanishes in the low mutation
rate (µ→ 0) limit, and

dWf :=
m∑
i=1

(
fi − f

)√
A+

i dW
(i)
t (5.4)

is a stochastic integral term describing un-directed stochastic fluctuations and vanishes
upon taking expectation values (Also see equation (E.9) in Appendix E for a more elegant
representation of this term as an integral against a single Wiener process). Note that the
1/
√
K factor outside this term in equation (5.2) means that these stochastic fluctuations also

disappear in the infinite population (K → ∞) limit.

Taking K → ∞ in equation (5.2) recovers the standard Price equation as the infinite
population limit (either (3.20) or (3.21) based on whether fi varies with time; also see Rice,
2020 for a stochastic Price equation in a discrete-time setting).

Each term in equation (5.2) lends itself to a simple biological interpretation. The first
term, Cov(w, f), is well-understood in the classical Price equation and represents the effect
of natural selection in the infinite population setting. In the stochastic Price equation (5.2),
the effects of the second term of equation (5.1) decompose into a selection term Cov(τ, f)
for reduced turnover rates and a transmission bias term that vanishes in the weak mutation
(µ→ 0) limit. Following Constable et al., 2016 and Week et al., 2021, I refer to the effect of
the covariance term (the second term of equation (5.2)) as noise-induced selection since it
occurs exactly analogously to classical natural selection (but for lower τ) and is induced purely
by the finiteness of the population. Biologically, the Cov(τ, f) term (with a negative sign)
describes a biasing effect due to differential turnover rates and can intuitively be understood
as being similar to gambler’s ruin in probability theory through the following reasoning: If
a type i has a higher τi, it must have a higher birth and death rate and thus experiences
more births and deaths in a given time interval than an otherwise equivalent species with a
lower τi. More events mean greater demographic stochasticity, and types with a higher τi
thus tend to be eliminated by a stochastic analog of selection because they experience more
chance events (births and deaths) in a given time period and thus have greater stochastic
fluctuations. This effect is less visible if the total population size is higher because larger
populations generally experience less stochasticity, which is reflected in the 1/NK factor in
this term. Noise-induced selection for reduced turnover rates has also been interpreted as a
selection for ‘lower reproductive variance’ (Gillespie, 1974; Wang et al., 2023). This latter
interpretation is on purely mathematical grounds — the total turnover τixi determines the
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variance of the distribution obtained as the solution to the SDE for population densities given
by equation (3.9).

The third term of (5.2) is relevant in both finite and infinite populations whenever fi
can vary over time and represents feedback effects on the quantity fi of the ith species over
short (‘ecological’) time-scales. Such feedback could be through a changing environment,
phenotypic/behavioral plasticity, or any manner of other ‘ecological’ phenomena. This is the
term that captures eco-evolutionary feedback loops.

The fourth term of (5.2) is a transmission bias term, with a correction factor due to noise-
induced selection. Finally, the last term of (5.2) describes the role of stochastic fluctuations.
The contributions of this last term are ‘directionless’ due to the dWt factors, and this term
vanishes when we take a conditional expectation value over the underlying probability space.
I denote this probabilistic expectation value operation by E[·] to distinguish it from the
statistical mean (3.12). Note that this expectation is conditioned on the initial state of the
population, and thus E[·] is really shorthand for E[ · | X0 = x0].

Two particularly interesting implications of (5.2) are realized upon ignoring mutations by
setting µ = 0 and then substituting f = w and f = τ . We first note that:

Cov(w, τ) = Cov
(
b(ind)(x)− d(ind)(x) , b(ind)(x) + d(ind)(x)

)
(5.5)

= σ2
b(ind)(x) − σ2

d(ind)(x) (5.6)

It is important to remember once again that just like the statistical mean, the statistical
variance σ2

f(t) of a type-level quantity f is a random variable obtained by calculating the
variance of the quantity in the population at time t, and is not to be confused with the
probabilistic/ensemble variance obtained by calculating the variance of a quantity over
different realizations of the stochastic process (see section 3.4). Upon substituting f = w in
(5.2) and taking expectations over the underlying probability space, we obtain:

E
[
dw

dt

]
= E

[
σ2
w

]
︸ ︷︷ ︸

Fisher’s
fundamental

theorem

− E
[
σ2
b(ind) − σ2

d(ind)

KNK(t)

]
︸ ︷︷ ︸

Noise-induced
selection

+ E
[

∂w

∂t

]
︸ ︷︷ ︸
Eco-evolutionary

feedbacks to fitness

(5.7)

Taking K → ∞ in (5.7) recovers a well-known equation in population genetics upon noting
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that the process tends to a deterministic process as K → ∞, as noted in section 3.6, and thus
the expectation value in the infinite population case is superfluous. The first term, σ2

w, is the
subject of Fisher’s fundamental theorem (Fisher, 1930; Price, 1972; Frank and Slatkin, 1992;
Kokko, 2021). The second term of equation (5.7) is a manifestation of noise-induced selection
and vanishes in the infinite population limit, and is thus particular to finite populations.
Finally, the last term arises in both finite and infinite populations whenever wi can vary over
time (Frank and Slatkin, 1992; Kokko, 2021; Baez, 2021), be it through frequency-dependent
selection, phenotypic plasticity, varying environments, or other ecological mechanisms, and
represents feedback effects on the fitness wi of the ith species over short (‘ecological’) time-
scales. The fact that Fisher (1930) appears to have been rather vague and dismissive of
this feedback has led to much discussion, debate, and confusion about the interpretation,
importance, and implications of his ‘fundamental theorem’ (see Kokko, 2021 and sources
cited therein).

Carrying out the same steps with f = τ in (5.2) yields a new equation due to Kuosmanen
et al. (2022). The result is an analog of Fisher’s fundamental theorem for the turnover rates,
and reads:

E
[
dτ

dt

]
= E

[
σ2
b(ind) − σ2

d(ind)

]
︸ ︷︷ ︸

Classical selection
effects

− E
[

σ2
τ

KNK(t)

]
︸ ︷︷ ︸

Noise-induced selection
effects

+ E
[

∂τ

∂t

]
︸ ︷︷ ︸
Eco-evolutionary
feedbacks to τi

(5.8)

The implications of this equation have been extensively discussed in Kuosmanen et al., 2022,
which is where I refer the interested reader.

5.1.3 The fundamental equation for the variance of a type-level

quantity

Equation (5.2) is a general equation for the mean value of an arbitrary type level quantity f
in the population. In many real-life situations, especially those pertaining to finite populations,
we are interested in not just the mean, but also the variance of a type-level quantity. In
Appendix C, I show that under the same assumptions used to derive (5.1), the statistical
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variance of any type level quantity f obeys

dσ2
f = Cov

(
w, (f − f)2

)
dt− 1

KNK

[
τσ2

f + 2Cov
(
τ, (f − f)2

) ]
dt

+ 2Cov
(
∂f

∂t
, f

)
dt+Mσ2

f
(p, NK)dt+

1√
KNK(t)

dWσ2
f

(5.9)

where

Mσ2
f
(p, NK) := µ

[(
1− 2

KNK

)( m∑
i=1

(fi − f)2Qi(p)

)
+ σ2

f

(
1− 1

KNK

) m∑
i=1

Qi(p)

]
(5.10)

is a mutational term that vanishes in the µ→ 0 limit and

dWσ2
f
:=

m∑
i=1

(
fi − f

)2√
A+

i dW
(i)
t (5.11)

is a stochastic integral term measuring the (non-directional) effect of stochastic fluctuations
that vanishes upon taking an expectation over the probability space (Also see equation (E.11)
in Appendix E for a more elegant representation of this term as an integral against a single
Wiener process). In the case of one-dimensional quantitative traits, an infinite-dimensional
version of (5.9) has recently been rigorously derived (Week et al., 2021) using measure-
theoretic tools under certain additional assumptions (See equation (21c) in Week et al., 2021).
Taking expectations over the probability space in (5.9) and substituting mutation as acting
via a Gaussian kernel also recovers equations previously derived (Débarre and Otto, 2016)
in the context of evolutionary branching in finite populations as a special case. An infinite
population (K → ∞) version of equation (5.9) also appears in Lion, 2018.

Once again, terms of equation (5.9) lend themselves to straightforward biological interpre-
tation. The quantity (fi − f)2 is a measure of the distance of fi from the population mean
value f , and thus covariance with (f − f)2 quantifies the type of selection operating in the
system: A negative correlation is indicative of stabilizing selection, and a positive correlation
is indicative of disruptive (i.e. diversifying) selection. An extreme case of diversifying selection
for fitness occurs if the mean fitness is at a local minimum for fitness but fi ̸≡ f (i.e. the
population still exhibits some variation in f). In this case, if the variation in f is associated
with a variation in fitness, then Cov(w, (f − f)2) is strongly positive and the population
experiences a sudden explosion in variance, causing the emergence of polymorphism in the
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population. If Cov(w, (f − f)2) is still positive after the initial emergence of multiple morphs,
evolution eventually leads to the emergence of stable coexisting polymorphisms in the pop-
ulation - this phenomenon is a slight generalization of the idea of evolutionary branching
that occurs in frameworks such as adaptive dynamics (Geritz et al., 1998), and a special case
of the exact equation (5.9) has been used before to study evolutionary branching in finite
populations (Débarre and Otto, 2016).

The Cov (∂f/∂t, f) term once again represents the effect of eco-evolutionary feedback
loops due to rapid change in f that is not solely due to changes in p. The Mσ2

f
(p, NK)

term quantifies the effect of mutations on the variance of f . Note that each Qi(p) ≥ 0 by
its definition in (3.10) and thus

∑
iQi(p) > 0 if there are any mutational effects (and = 0

otherwise). Furthermore, the total population size KNK > 2 for most interesting evolutionary
questions. Thus, from (5.10), it is clear that when µ > 0 (i.e. there is mutation in the
system), we have Mσ2

f
(p, NK) > 0, meaning that mutations always increase the variance of f

in the population. Since σ2
f is a measure of the amount of variation of f in the population,

the Mσ2
f
(p, NK) term is thus a rigorous formulation of the well-known idea that mutation

acts as a ‘source’ of variation for evolution to act on.

The τσ2
f term quantifies the loss of variation due to stochastic extinctions (i.e. demographic

stochasticity) and thus represents the classic effect of neutral genetic (or ecological) drift
in finite populations. To see this, it is instructive to consider the case in which this is the
only force at play. Let us imagine a population of asexual organisms in which each fi is
simply a label or mark arbitrarily assigned to individuals in the population at the start of
an experiment/observational study and subsequently passed on to offspring - for example,
a neutral genetic tag in a part of the genome that experiences a negligible mutation rate.
Let us set µ = 0 so that the labels cannot change between parents to offspring. This means
that we have Mσ2

f
(p, NK) ≡ 0. Further, since the labels are arbitrary and have no effect

whatsoever on the biology of the organisms, each label has the same fitness wi ≡ w and
per-capita turnover τi ≡ τ , and thus w = w and τ = τ . Note that since every type has the
same fitness and turnover rate, we have Cov

(
w, (f − f)2

)
≡ Cov

(
τ, (f − f)2

)
≡ 0. Since

the labels do not change over time, we also have Cov (∂f/∂t, f) = 0. From (5.9), we see that
in this case, the variance changes as

dσ2
f = −

τσ2
f

KNK

dt+
1√

KNK(t)
dWσ2

f
(5.12)
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Where I have written τ = τ , since every type has the same turnover rate. On taking
expectations, the second term on the RHS vanishes and we see that the expected variance in
the population obeys

dE[σ2
f ]

dt
= −

(
E
[

τ

KNK

])
E[σ2

f ] (5.13)

where I have decomposed the expectation of the product on the RHS into a product of
expectations, which is admissible since the label f is completely arbitrary and thus independent
of both τ and NK(t). Equation (5.13) is a simple linear ODE and has the solution

E[σ2
f ](t) = σ2

f (0)e
−E

[
τ

KNK

]
t (5.14)

which tells us that the expected diversity (variance) of labels in the population decreases
exponentially over time. The rate of loss is E [τ(KNK)

−1], and thus, populations with higher
turnover rate τ and/or lower population size KNK lose diversity faster. This is because
populations with higher τ experience more stochastic events per unit time (a gambler’s
ruin type scenario), while extinction is ‘easier’ in smaller populations because a smaller
number of deaths is required to eliminate a label from the population completely. Note
that which labels/individuals are lost is entirely random (since all labels are arbitrary), but
nevertheless, labels tend to be stochastically lost until only a small number of labels remain
in the population.

5.2 A stochastic field theory for quantitative traits

In chapter 4, I formulated a ‘field equation’ for the evolution of one-dimensional quantita-
tive traits in populations. To recap, given a one-dimensional quantitative trait that takes
values in a trait space T ⊆ R, I defined the set M(T ) = {

∑n
i=1 δxi

| n ∈ N, xi ∈ T }, where
each δxi

is a Dirac mass centered at xi. I then formulated a model for the evolutionary dy-
namics of of finite fluctuating populations of individuals that vary in the relevant quantitative
trait as an M(T ) valued birth-death process. The population at time t is characterized by a
randomly varying density distribution (‘stochastic field’) ν(t) ∈ M(T ) such that for any subset
A ⊆ T , the number of individuals that have trait value in A is given by integrating ν(t) over
A. The change of this field is determined entirely by two functionals, b(x|ν) and d(x|ν) from
T ×M(T ) to [0,∞), that respectively describe the birth rate and death rate of individuals
of type x in a population ν. Under the assumption that there exists a suitable system size
parameter K > 0, I moved from the space of ‘number’ distribution functions M(T ) to
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the space of ‘density’ distribution functions MK(T ) = {
∑n

i=1 δxi
/K | n ∈ N, xi ∈ T } via a

functional analog of the system size expansion. By appropriately rescaling the birth and
death rate functionals, I then determined that P (ϕ, t), the probability that the population is
described by the distribution ϕ ∈ MK(T ) at time t, (approximately) satisfies the ‘stochastic
field equation’:

∂P

∂t
(ϕ, t) =

∫
T

[
− δ

δϕ(x)

{[
ϕ(x)w(x|ϕ) + µQ(x|ϕ)

]
P (ϕ, t)

}
+

1

2K

δ2

δϕ(x)2
{[
ϕ(x)τ(x|ϕ) + µQ(x|ϕ)

]
P (ϕ, t)

}]
dx

(5.15)
where w(x|ϕ), τ(x|ϕ), and Q(x|ϕ) are functionals that respectively describe the Malthusian
fitness, per-capita turnover rate, and birth rate due to mutations (with mutation rate µ)
of type x ∈ T individuals (now a continuous variable) in a population ϕ. We then saw
that this equation yields some well-known frameworks of quantitative genetics in the infinite
population (K → ∞) limit, thus illustrating consistency with known theories.

If the ‘intuitive’ version of Itô’s formula for MK(T ) valued stochastic processes obtained
by informally ‘taking the limit’ m → ∞ in the Itô’s formula for m-dimensional stochastic
processes holds, then the exact same steps carried out in Appendices B and C will ‘go through’
essentially unchanged for quantitative traits and yield the equations obtained by simply
informally taking m → ∞ in (5.1), (5.2) and (5.9) as the ‘fundamental equations’ for the
evolution of quantitative traits. In their supplementary sections S1 and S2, Week et al. (2021)
have recently proposed exactly the Itô formula we would need for L2(R,m) valued processes in
which the A±(x|ϕ) (in my notation as defined in chapter 4) are Hilbert-Schmidt operators via
a heuristic Itô multiplication table. They have also shown that their heuristics are equivalent
to the rigorous infinite-dimensional stochastic calculus proposed by Da Prato and Zabczyk
(2014) for more general Hilbert space valued processes1. Furthermore, using these ‘spacetime
white noise heuristics’ together with a particular functional form for (weak) solutions to
an SPDE describing populations with Gaussian trait distributions, Week et al. (2021) have
arrived at precisely the infinite-dimensional version of equations (5.2) and (5.9) obtained
by ‘taking the limit’ m→ ∞ in (5.2) and (5.9) for the special case in which the type-level

1If this sentence sounds like abstract gibberish to you, don’t worry too much about the details -the essence
is that Week et al. (2021) have proven the ‘correct’ formula we need holds whenever b(x|ν), d(x|ν) and MK(T )
together fulfill certain technical requirements. My heuristics here are only a ‘first step’ and have focused on
accessibility and actually formulating the problem in formal terms rather than on mathematical propriety, and
thus make no attempt to verify whether and when these technical requirements are satisfied. The required
properties will likely be fulfilled only for some ‘nice’ subspace of MK(T ) and not the entire space, and future,
more rigorous work should focus on figuring out which functions are included in this subspace.
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quantity f is simply the value of the quantitative trait under study from a completely different
starting point(!). Equation (5.15) is the ‘functional Fokker-Planck view’ of the stochastic
processes for the evolutionary ecology of quantitative traits that Week et al. (2021) study
from the ‘SPDE view’. Indeed, the two approaches are exactly complementary, and my
formulation in chapter 4 provides an alternate method of attack for the study of quantitative
traits in finite fluctuating populations that may be more appropriate for some particular
problems, while Week et al.’s (2021) approach may be more appropriate for others.

More generally, the well-known intimate relation between Itô SDEs and Fokker-Planck
equations (see section 2.1) is extremely useful and has been extensively exploited in the
literature (Van Kampen, 1981; Øksendal, 1998; Gardiner, 2009), because some problems are
much more easily attacked using tools from probability theory that operate on Itô processes,
whereas others are more amenable to study using tools from PDE theory that operate
on the Fokker-Planck equations. In the infinite-dimensional case, working with the field
theory through functional Fokker-Planck equations such as (5.15) allows us to use tools
with an essentially ‘differential equation’ flavor such as spectral methods (Rogers et al.,
2012a; Rogers and McKane, 2015; See also Appendix D for a general model-independent
pedagogical example), fast-mode (‘adiabatic’) elimination/slow manifold approximation (Con-
stable et al., 2013; Parsons and Rogers, 2017), and WKB style expansions to detect extreme
events (Rogers et al., 2012a; Assaf and Meerson, 2017; though it bears noting that WKB
theory is closely related to large deviation principles that occur in the study of Markov
processes and often come in a distinctly ‘probabilistic’ flavor, see Dembo and Zeitouni, 1998).
On the other hand, many biologically interesting questions are much easier to approach
from the branching processes/SPDE side using tools that have an essentially ‘probabilistic’
flavor such as duality (Dawson, 1975; Greenman, 2020), infinitesimal generators/semi-group
theory (Ethier and Kurtz, 1986; Finkelshtein et al., 2012), and the martingale problem (Ethier
and Kurtz, 1986; Dawson et al., 2000; Champagnat et al., 2006; Champagnat et al., 2008).
Rigorously establishing and systematically exploiting relations between functional Fokker-
Planck equations of the form (5.15) and the sort of general SPDEs studied by Week et al.
(2021) for measure-valued branching processes could thus prove very fruitful for developing
more integrative eco-evolutionary theory since it allows us to seamlessly transition between
complementary views of the same object to suit the problem at hand2.

2The physics literature has long recognized this. Physicists regularly exploit the connections between
stochastic/quantum field equations and SPDEs, often studying SPDEs in completely ‘classical’ systems using
tools and language from quantum field theory (Hochberg et al., 1999; Baez and Biamonte, 2018).
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To the best of my knowledge, a general formulation of stochastic field equations for the
population dynamics of quantitative traits from the functional Fokker-Planck side in the
manner I have carried out here has not been done before. Similar equations have been formu-
lated for some specific stochastic models of quantitative trait evolution (Rogers et al., 2012a;
Rogers and McKane, 2015) and population ecology of size-structured communities (O’Dwyer
et al., 2009). Stochastic field equations are also known in mathematical neurobiology (Buice
and Cowan, 2007; Bressloff, 2010; Coombes et al., 2014), and have recently been proposed in
a model of collective motion (Ó Laighléis et al., 2018). Broadly similar deterministic field
theoretic approaches have also been proposed to study bio-geography and spatial biodiversity
patterns such as the species-area relationship (O’Dwyer and Green, 2010; But also see Grilli
et al., 2012 - the actual details of the calculations presented in O’Dwyer and Green, 2010 are
not correct). The ubiquity of such approaches in diverse areas of theoretical biology suggests
that the formal systematic study and analysis of such equations could have wide-spread
applications.

Currently, (stochastic) field equations are primarily used by physicists working in areas such
as statistical field theory and quantum field theory, and are largely attacked using ingenious
and often somewhat system-specific tools that may not necessarily be mathematically well
understood (Carmona and Rozovskĭı, 1999; but see Bogachev et al., 2015 for a rigorous
treatment of some infinite-dimensional Fokker-Planck equations). Equation (5.15) opens up
the study of quantitative trait dynamics in finite fluctuating populations to analysis using
some of these tools - for example, a careful reading of the literature provides many hints
(albeit couched in physics language) for how (quantum) field theoretic ideas such as the Fock
space representation (Del Razo et al., 2022), ‘loop diagrams/expansions’ (Hochberg et al.,
1999; Dodd and Ferguson, 2009), and the often closely related path integral formalism (Doi,
1976; Peliti, 1985; Hochberg et al., 1999; Chow and Buice, 2015; Weber and Frey, 2017), can
all be co-opted to coax biological insights from the processes modeled by equation (5.15).
The formalism developed in Chapter 4 is intended to encourage the use of such techniques
and make some of the models and ideas more accessible to theorists without formal training
in mathematical areas such as measure theory and functional analysis.

Importantly, the formalism I develop here in terms of functional Fokker-Planck equations
likely does not carry over to the study of higher dimensional quantitative traits (or populations
which vary in two or more one-dimensional quantitative traits) because these processes are
routinely badly behaved in higher dimensions: In particular, a probability density P (ϕ, t)
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with respect to the reals frequently does not even exist in higher dimensions if one has any
biologically non-trivial features such as interactions between types (Fleming and Viot, 1979;
Walsh, 1986; Konno and Shiga, 1988; Evans and Perkins, 1994; Etheridge, 2000), rendering
equation (5.15) entirely meaningless. My (admittedly limited) understanding is that such
processes are also rather difficult to study in two or more dimensions from the SPDE side for
similar reasons (Etheridge, 2000), where the lack of a density leads to distribution-valued
(rather than function-valued) solutions at best and thus demands a considerable amount of
advanced functional analysis to establish even ‘basic’ existence/uniqueness results (Walsh,
1986; Carmona and Rozovskĭı, 1999; Prévôt and Röckner, 2007; Liu and Röckner, 2015; Balan,
2018). It may well be the case that concrete biologically useful progress in this direction
requires new mathematics altogether, a situation increasingly also encountered in other areas
of mathematical biology (Vittadello and Stumpf, 2022). Just as theoretical physics has done
in the past, the pursuit of general mathematical descriptions of biological theory may therefore
also inspire new ideas that are of independent interest to ‘pure’ mathematicians (Cohen,
2004).
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Chapter 6

Discussion and Outlook

Writing in the last months of this mille-
nium, it is clear that the prime intellec-
tual task of the future lies in constructing
an appropriate theoretical framework for
biology

Sydney Brenner (1999)

In this thesis, we have seen how stochastic birth-death processes can be used to construct
and analyze mechanistic individual-based models for the dynamics of finite populations. In
doing so, we have also seen that various well-known equations of evolutionary dynamics can
be recovered in the infinite population size limit. In the finite-dimensional case, the infinite
population limit corresponds to the equations of population genetics and evolutionary game
theory. In the infinite-dimensional case, we instead obtain the equations of quantitative
genetics. In both cases, the mean value of the trait in the population changes according
to an equation resembling the Price equation. My derivation further highlights the natural
connections between various equations of population dynamic and extends these similarities
to finite, fluctuating populations (Table 6.1).

83
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Stochastic models in biology often exhibit behaviors that are markedly different from
their deterministic limits (Jafarpour et al., 2017; Boettiger, 2018; Jhawar et al., 2020; Coomer
et al., 2022). Since real-life populations are stochastic and finite, it is thus imperative that
modellers work with stochastic models instead of their deterministic limits, lest they risk
missing important phenomena that are unique to stochastic systems (Black and McKane,
2012; Hastings, 2004; Shoemaker et al., 2020; Schreiber et al., 2022). In the context of
population biology, the finiteness of populations is an important source of stochasticity that
can lead to behavior not captured in corresponding infinite population limits (Black and
McKane, 2012; Rogers et al., 2012a; Débarre and Otto, 2016; DeLong and Cressler, 2023).
When actually incorporating this stochasticity into eco-evolutionary theory, it is important
to build up the stochastic theory from first principles instead of adding noise to existing
deterministic models in an ad-hoc fashion, since the latter procedure can very easily lead
to ill-behaved models with un-biological properties (Strang et al., 2019). Indeed, several
theorists have called for a ‘bottom-up’ reformulation of eco-evolutionary dynamics from the
first principles of stochastic birth-death processes on the grounds that such a formulation is
more fundamental and mechanistic (Metcalf and Pavard, 2007a; Lambert, 2010; Geritz and
Kisdi, 2012; Doebeli et al., 2017).

In this thesis, I present a mathematical framework for such a reformulation. Part II of
this thesis develops a formalism for both populations of individuals that vary in discrete
characters (Chapter 3) as well as populations of individuals that vary in a single one-
dimensional quantitative character (Chapter 4). The central result of this reformulation
is a series of stochastic differential equations derived in Chapter 5. To begin, I derive an
equation for change in type frequencies in the population (equation (5.1)) that generalizes the
replicator-mutator equation to finite, fluctuating, closed populations evolving in continuous
time. From this, I show how one can derive an equation for changes in the population mean
of an arbitrary type-level quantity (equation (5.2)) that generalizes the dynamic, continuous
time version of the Price equation to finite, fluctuating populations. I also derive an equation
for changes in the population variance of an arbitrary type-level quantity (equation (5.9)) in
such populations that generalizes a recent infinite population formulation of the same (Lion,
2018). My work thus generalizes some fundamental formal structures of eco-evolutionary
population dynamics to finite, fluctuating populations. The equations I derive deal with
biologically important quantities in a ‘coarse-grained’ manner, lend themselves to simple
biological interpretation, and are very general. They thus fulfill the criteria to be called
‘fundamental theorems’ (in the sense of Queller, 2017) and present a ‘unifying perspective’
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(in the sense of Lion, 2018) for the dynamics of finite populations. While my equations thus
recover standard results such as the Price equation and the replicator-mutator equation in
the infinite population limit, they also predict that these results do not completely capture
the behavior of finite populations.

In Chapter 4, I also postulate a ‘stochastic field theory’ approach to modelling the
evolution of quantitative traits in finite, fluctuating populations. I then show that this
approach is consistent with known frameworks in theoretical population biology, reproducing
results from quantitative genetics in the infinite population limit. This formulation also
highlights a (somewhat heuristic) approach to the study of spacetime stochastic processes and
related mathematical objects that avoids measure-theoretic tools and may be of independent
interest to applied mathematicians. Broadly similar stochastic field theoretic approaches
have also been proposed in mathematical neurobiology (Buice and Cowan, 2007; Bressloff,
2010; Coombes et al., 2014) and models of collective motion (Ó Laighléis et al., 2018). I
conjecture that the stochastic ‘fundamental equations’ I derive in section 5.1 for discrete
traits should also hold for quantitative traits under mild assumptions on the trait space
of the quantitative traits, though no proof is attempted in this thesis. We can, however,
take encouragement from the observation that Week et al., 2021 have already derived some
special cases of these equations1 for quantitative traits using an approach grounded in the
theory of measure-valued branching processes under certain technical assumptions on the
stochastic process under study, the most biologically important assumption being that the
traits are normally distributed in the population. My formalism and Week et al., 2021’s
formalism are complementary to each other, and reflect a deep duality between related
mathematical structures that is well-appreciated in the applied mathematics literature (see
section 5.2). These two complementary approaches to modeling stochastic processes have long
been recognized in population genetics (Lambert, 2006), where similar analogs of the broad
idea of the approach for models of fixed total population size go by the names ‘branching
processes approach’ (Week et al., 2021’s formalism; In the classic literature, seen in work
like Haldane, 1927; Fisher, 1931) and ‘diffusion theory approach’ (My formalism; In the
classic literature, seen in work like S. Wright, 1931; Kimura, 1957).

1In particular, equations (21b) and (21c) in Week et al., 2021 are precisely the m → ∞ limit of my
equations for changes in the mean value of a type-level quantity (equation 5.2) and changes in the variance of
a type-level quantity (equation 5.9) respectively for the special case in which the type-level quantity is the
value of the quantitative trait being studied. See section 5.2 for a more detailed technical discussion.
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6.1 Noise-induced selection is a generic outcome of evolu-

tion in finite, fluctuating populations

Several specific finite population models illustrate that evolution in finite population can
proceed in a direction different from that predicted by the infinite population limit (Parsons
et al., 2010; Melbinger et al., 2010; Houchmandzadeh and Vallade, 2012; Houchmandzadeh,
2015; Chotibut and Nelson, 2015; Débarre and Otto, 2016; Behar et al., 2016; Constable et al.,
2016; Veller et al., 2017; Abu Awad and Coron, 2018; Parsons et al., 2018; McAvoy et al., 2018;
McLeod and Day, 2019). Indeed, in some stochastic models, the outcome of finite population
models can be exactly opposite to that of the infinite population limit, a phenomenon
sometimes referred to as ‘reversing the direction of deterministic evolution’ (Constable et al.,
2016; McLeod and Day, 2019; Wang et al., 2023). These effects have been recognized to play
an important role in specific finite population models of epidemiology (Kogan et al., 2014;
Humplik et al., 2014; Parsons et al., 2018; Day et al., 2020), heterogamety (Veller et al., 2017;
Saunders et al., 2018), life-history evolution (Gillespie, 1974; Kuosmanen et al., 2022), and
social evolution (Houchmandzadeh and Vallade, 2012; Houchmandzadeh, 2015; Chotibut and
Nelson, 2015; Constable et al., 2016; McLeod and Day, 2019; Wang et al., 2023).

Chapter 5 formulates a set of stochastic differential equations derived from our general
birth-death formalism which reveal that the results of all these studies can be explained
through a single set of equations. In particular, the equations of section 5.1 generically
predict a directional evolutionary force — noise-induced selection — acting on variation in
per-capita turnover rate τ in the population and favoring types whose per-capita turnover
rate is lower than that of the population average. Noise-induced selection is only seen in
finite populations, is seen whenever there is differential turnover rate τ in the system, and
arises due to different types of individuals in the population experiencing a different number
of stochastic events (birth and death) in a given time interval. This thesis is, to the best of
my knowledge, the first time that noise-induced selection has been explicitly formulated and
derived in full generality using a general ‘model-independent’ evolutionary framework such
as the Price equation (or my generalization thereof). My results thus unify several previous
studies focused on specific systems under a single conceptual banner and show that their
predictions are a generic outcome in finite, fluctuating populations of any nature as long as
there is some heritable variation in per-capita turnover rates.
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Populations consisting mostly of types that tend to increase the total population size
KNK(t) (such as altruists in evolutionary theory and mutualists in ecological communities)
will experience a reduced magnitude of noise-induced selection acting in the system compared
to Populations consisting mostly of types that do not facilitate such an increase, such as
cheaters and highly competitive species. Further, if altruists/mutualists act by reducing
the death rate (rather than increasing the birth rate) of other individuals, their presence
causes higher w and lower τ in the beneficiary individuals, both of which are favored by
evolution through classical selection and noise-induced selection respectively (but note that
if they act by increasing the birth rate, they increase the magnitude of negative noise-
induced selection disfavouring the beneficiary individual). This is why the direction of
deterministic selection is specifically reversed to favor mutualists in finite population models
with fluctuating population sizes if interaction effects are on the death rate (McLeod and
Day, 2019). Thus, selection for reduced turnover rate could help explain why cooperation
often persists in fluctuating populations in laboratory experiments (Sanchez and Gore, 2013)
and finite population IbMs (Houchmandzadeh and Vallade, 2012; Houchmandzadeh, 2015;
Chotibut and Nelson, 2015; Behar et al., 2016; McAvoy et al., 2018; McLeod and Day, 2019)
of social evolution despite infinite population models predicting their extinction.

The fact that total population size controls the strength of noise-induced selection also
explains why cooperation is favored in the early transient period of population growth (Mel-
binger et al., 2010) when simulations are initiated from a small population size — In the
early transient period, NK(t) is small, and the biasing effect of differential turnover rates
is stronger, thus favoring cooperation. The fact that the entire term scales inversely with
the total population size KNK(t) suggests that the effect of this force is weak for large
populations, which explains why the persistence of cooperators is often only observed in
restrictive sounding conditions such as quasi-neutrality, timescale separation, or a weak
selection + weak mutation limit (McLeod and Day, 2019). In all three of these cases, the
effects of classical selection vanish, and thus the first term on the RHS of (5.2) becomes
identically 0. It therefore no longer contributes to the trait frequency dynamics, allowing us
to see the (otherwise weak) contributions of noise-induced selection.
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6.2 Noise-induced selection has concrete implications for

finite populations

The existence of noise-induced selection directly implies (from equation (5.1) or (5.2)) that
evolution is not expected to maximize fitness in finite populations even if fitness is entirely
frequency independent as long as there is some (heritable) variation in the turnover rates τi,
further underscoring the now well-appreciated point that the view of evolution as ‘climbing a
hill’ on a fitness landscape and thereby maximizing fitness is rather limited (Grodwohl, 2017).
Further, from our generalization of Fisher’s fundamental theorem (equation (5.7)), it is clear
that unlike in infinite populations, the mean fitness of a finite population can systematically
decrease even without any frequency-dependence in fitness, and perhaps more surprisingly,
can change even when there is no standing variation in the mean fitness as long as there is
some variation in either the birth rates or the death rates.

The equations of section 5.1 also imply that for the evolution of a trait to be truly neutral
in finite populations (in the sense of all m types in a system having equal fixation/extinction
probability if we start with an initial state in which every type has frequency 1/m), it is
not sufficient for the trait in question to be neutral with respect to fitness w. Instead, we
also require the trait to be neutral with respect to turnover rate τ . Though this is clear
from examining equations (5.1) or (5.2), I also illustrate a deviation from neutrality explicitly
for the m = 2 case using a simple resource-competition model in Appendix D.3. Indeed,
in ecological models, previous work in the ‘quasi-neutral’ regime has shown that in finite,
fluctuating populations, the equal growth rate of types is not sufficient to ensure equal
fixation probabilities and that there is a slight biasing for types with lower turnover rates,
sometimes interpreted as a selection ‘for longevity’ (Lin et al., 2012; Oliveira and Dickman,
2017; Balasekaran et al., 2022). In models of evolutionary game theory in fluctuating finite
populations, individuals with lower death rates have higher fixation probability even when
growth rates are equalized (Huang et al., 2015; Czuppon and Traulsen, 2018). Similarly,
models of cell cycle dynamics find that selection favors cell types that periodically arrest
their cell cycle relative to non-arresting cells even when their growth rates are equal (Wodarz
et al., 2017). In the language of the birth-death formalism I develop in this thesis, all of these
studies equalize the growth rates w of competing types but allow the turnover to vary (by
arresting the cell cycle and thus reducing turnover, for example), thus allowing noise-induced
selection for reduced turnover to operate in the system. Since noise-induced selection is
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directional, the seemingly small systematic deviations from neutrality exhibited by these
models can have significant consequences over long evolutionary times (For example, see Veller
et al., 2017). My derivations show analytically that such deviations from neutrality in finite
populations are a generic phenomenon explained by noise-induced selection and should be
expected whenever there is variation in turnover rates. Selection on turnover rates also leads
to insights on life-history evolution, and these insights have been extensively reported in a
recent pre-print (Kuosmanen et al., 2022).

On the practical side, the existence of noise-induced selection implies that simulation
studies working with evolutionary individual-based or agent-based models should be careful
about whether interaction effects are incorporated into birth rates or death rates since this
seemingly arbitrary choice can have unintended consequences due to noise-induced selection,
thus potentially biasing results (McLeod and Day, 2019; Kuosmanen et al., 2022). My results
also indicate that measuring the growth rate of populations is not, in general, sufficient for
accurate prediction/inference of future trajectories of the relative abundance of a species (or
phenotype, allele, etc.) from empirical data even in completely controlled environments. The
growth rate wi = b

(ind)
i −d(ind)

i of a species i only specifies the difference between its per-capita
birth and death rates. In contrast, the complete stochastic dynamics also depend on the
total turnover τi = b

(ind)
i + d

(ind)
i (i.e. the sum of the per-capita birth and death rates). This

discrepancy can lead to systematic deviations from the trajectories predicted using the growth
rate alone, especially in smaller populations. This deviation should be empirically measurable.
Recent improvements in statistical inference methods for birth and death rates suggest that
we should also be able to estimate the birth and death rates of real populations (Huynh et al.,
2023) and thus the quantitative predictions of our SDEs, providing a direct empirical test of
theoretical predictions. However, since the strength of noise-induced selection scales inversely
with the total population size, we can expect such deviations to quickly become too small to
detect in medium to large populations, though this is purely due to limits on the precision of
experimental measurements rather than due to any theoretical limitations.

Being mindful of noise-induced selection is also important for applied fields that regularly
deal with manipulating small populations, such as conservation and population management.
For example, when trying to increase the population of a hypothetical desired species in a
multi-species community, increasing the birth rate is not equivalent to reducing the death rate
even though both result in an increase in the Malthusian fitness (growth rate) wi. Decreasing
the death rate leads to a decrease in τi, which is favored by noise-induced selection, whereas
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increasing the birth rate leads to an increase in τi, which leads to noise-induced selection
acting to reduce the abundance of the focal species from the community (See Appendix D.3
for a simple example that illustrates this). If the total community size is small, increasing the
birth rate of a species can thus lead to noise-induced selection completely eliminating the focal
species from the community despite the fact that we increased the growth rate of this species.
Indeed, numerical investigations of ‘burst-death’ dynamics in fluctuating viral populations
show that increasing Malthusian fitness by boosting the survival rate (i.e. reducing the death
rate) leads to a greater increase in fixation probability than if an exactly equivalent increase
in Malthusian fitness is achieved via increasing the burst rate (i.e. increasing the birth
rate) of viral particles (Alexander and Wahl, 2008). A recent finite population birth-death
model for cancer treatment provides another concrete example of the consequences of the
asymmetry between changing birth rates and death rates: This study shows that in their
model, due to the presence of noise-induced selection, the potential of a tumorous growth to
adapt to treatments and experience evolutionary rescue depends inversely on the per-capita
turnover τi of the constituent cancer cells, with obvious implications for optimal treatment
strategies (Raatz and Traulsen, 2023).

Lastly, noise-induced selection is particular to fluctuating populations and does not occur
in models with fixed population sizes2 such as Wright-Fisher or Moran models, suggesting
that working with such constant population frameworks is not sufficient to accurately capture
the dynamics of real populations. Several theoretical studies have pointed out that the
empirically common practice of approximating the size of fluctuating populations through a
constant ‘effective population size’ (often obtained as the harmonic mean of population size
over time) is of limited applicability (Gillespie, 1974; Sjödin et al., 2005; Parsons et al., 2010;
Iizuka, 2010; Abu Awad and Coron, 2018; Kuosmanen et al., 2022). Recent experimental
evolution studies have also directly shown that the harmonic mean of population size need
not be a good proxy for capturing and/or predicting evolutionary dynamics in fluctuating
populations (Chavhan et al., 2019). In our case, noise-induced selection cannot be captured
by any constant effective population size, harmonic mean or otherwise, since noise-induced
selection effects also depend on the turnover τi of each type and are thus a property of
each type in a fluctuating population (and not merely a function of the population size as

2If
∑

j xj is a constant, the map xi → xi/
∑

j xj becomes a linear map and we no longer need Itô’s formula
to move from densities to frequencies in the derivation I conduct in Appendix B; Thus, simply dividing
equation (3.9) by the (now constant) total population size provides the complete dynamics of the system
in frequency space: Note that the directional terms in equation (3.9) depend only on A−, which in turn
depends only on the fitness wi and the mutation terms, and this system thus has no noise-induced selection.



92 Eco-evolutionary dynamics of finite populations from first principles

a whole), meaning that each type would demand its own effective population size for the
entire population. My results thus lend further support to one of the general messages
of these previous studies - approximating fluctuating populations via a simpler constant
(effective) population size requires some careful justification, since it may inadvertently remove
important evolutionary properties of the systems under study.

6.3 Connections with other theoretical frameworks

Lion, 2018 has recently proposed a reformulation of the relatively well-known unification
of eco-evolutionary dynamics via the Price equation (Frank, 2012; Queller, 2017; Luque and
Baravalle, 2021) in a dynamically sufficient, continuous time framework using ‘feedback’ as a
‘unifying perspective’. Our equations generalize the unifying framework described in Lion,
2018 to finite, fluctuating populations — taking K → ∞ in equations (5.1), (5.2), and (5.9)
recover equations (6), (11), and (14) in Lion, 2018 respectively. Lion, 2018 has pointed out
that in the dynamic setting (for infinite populations), the replicator-mutator equation (3.17)
is in some sense the truly ‘fundamental’ equation for evolutionary dynamics, and equations
like the Price equation are best viewed as a hierarchy of moment equations for the population
mean, population variance, etc. of a type-level quantity. This is also true in our framework
- equation (5.1) is the fundamental equation for population dynamics, and equations like
(5.2) and (5.9) can then be derived from (5.1) through repeated application of Itô’s formula
(in principle for any moment of the distribution of f in the population, though this quickly
becomes too tedious to actually carry out in practice). If we assume that the quantity f

follows a Gaussian distribution, then the mean and variance completely characterize the
distribution, and equations (5.1), (5.2), and (5.9) together specify the complete stochastic
dynamics of the system.

The equivalent of our stochastic equations has recently been derived for quantitative
traits from a very different starting point using the theory of measure-valued branching
processes (Week et al., 2021) — Equations (21b) and (21c) in Week et al., 2021 are exactly
the m→ ∞ version of our equations for changes in the mean value of a type-level quantity
and changes in the variance of a type-level quantity respectively for the special case in which
the type-level quantity is the value of the quantitative trait being studied. The methods
used by these authors is exactly complementary to the field equations we formulate in
Chapter 4 (See section 5.2 for a more detailed technical discussion). A recent preprint has
also independently arrived at our equations for type frequencies (equation (5.1)) and the
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change of mean fitness and turnover in the population (equations (5.7) and (5.8)) in the
context of life-history evolution using certain discrete time stochastic processes and their
approximation via techniques reminiscent of numerical stochastic integration (Kuosmanen
et al., 2022).

A recent study showed that in a very broad class of density-dependent competition models,
model-specific details can be ignored in favor of a universal ‘coarse-grained’ description that
only includes a small number of very generally defined quantities (Mazzolini and Grilli,
2022). Among the generic predictions of this general description was the presence of noise-
induced selection in general competition models. Our work generalizes this particular result
of Mazzolini and Grilli, 2022 to models with arbitrary interaction types and presents the
relevant equations in a formalism that is more in accordance with standard biological models
such as the Price equation. Our results also show that equations like the replicator-mutator
equation and Price equation are asymptotically ‘universal’, in the sense that an arbitrary
density-dependent birth-death process with functional forms given by (3.10) will satisfy the
replicator-mutator or Price equation as we move to infinitely large populations (K → ∞).
Thus, these equations provide coarse-grained ‘fundamental theorems’ that are always satisfied
for biological populations that are sufficiently large.

Rice has proposed a stochastic version of the Price equation in a series of papers (Rice,
2008; Rice and Papadopoulos, 2009; Rice, 2020) that follow the classic derivation by Price
himself (Rice, 2004). Like the original Price equation, these equations are formulated in a
very general manner that relates the phenotypic change between two given populations. As
such, they are more general than my equations, but, just like the original Price equation, are
dynamically insufficient and cannot be phrased in the language of dynamical systems (to the
best of my understanding). They are thus the true stochastic analog of the original Price
equation, whereas my version (equation (5.2)) is the analog of Lion’s (2018) version of the
Price equation in a continuous time, dynamically sufficient setting. The two formulations are
complementary — Rice’s equations (and the original Price equation) provide a very general
description for partitioning phenotypic change between two time points, whereas my approach
(and Lion’s (2018) version of the Price equation) provides equations that are slightly less
general, but are formulated in a continuous time, dynamically sufficient, predictive manner.
Rice’s derivations also treat fitness as fundamental, whereas I derive suitable notions of fitness
and turnover from demographic first principles. As a consequence, the ‘extra’ stochastic
term corresponding to noise-induced selection that appears in my equations fundamentally
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emerges from the stochasticity of the underlying births and deaths of organisms and is thus
of ecological/demographic origin, whereas the ‘extra’ stochastic term in Rice’s equations
emerges from the stochasticity of fitness3alone and, to the best of my knowledge, does not
correspond to the same effect I identify in this thesis. Lastly, whereas Rice’s equations are
exact, my equations are derived using a system-size expansion (see part II) and thus are,
strictly, speaking only an approximate statistical description of the dynamics (though these
approximations are usually very good for even moderate values of K (Black and McKane,
2012; Cianci et al., 2015)).

At first thought, the idea of an evolutionary force that selects individuals with lower birth
and death rates over individuals with higher birth and death rates may be reminiscent of
notions in life-history evolution like r vs K selection or selection on the pace of life (Stearns,
1977). However, it is not possible to conclude whether this similarity reflects some deep
principle or whether it is just superficial based solely on the work conducted in this thesis.
Models in life-history theory are often primarily concerned with spatiotemporally fluctuating
external environments, and thus the stochasticity at the core of life-history models is extrinsic
to the population. Ecological frameworks such as modern coexistence theory, which also
deal with questions about similar population dynamics and would benefit from a first
principles stochastic birth-death formulation, also typically work with fluctuating external
environments (Chesson, 1982; Chesson, 1994; Barabás et al., 2018; E. Johnson and Hastings,
2022). I have entirely neglected such extrinsic factors in my formalism. In principle, it
is possible to make the birth and death rates (3.10) in my framework also depend on a
temporally varying external environment E(t) (whose variation may possibly depend on
the population n(t)). Incorporating such a term would ensure that the ‘ecological feedback’
terms in equations (5.2) and (5.9) are non-zero, but may also lead to much more complex
dynamics. If the variation of the environment E(t) has some associated stochasticity, the
complete dynamics of the system would be the result of interactions between two qualitatively
different forms of noise, extrinsic noise from the environment, and intrinsic noise from the
finiteness of the population. Both theoretical (Gokhale and Hauert, 2016; Wienand et al.,
2017) and empirical (Chavhan et al., 2020; Chavhan et al., 2021) work suggests that such
dynamics can be quite complex and intricate, and may consequently be difficult to handle
analytically in the sort of generality I have employed throughout this thesis. Thus, while
integrating the birth-death framework I outline here with ecological ideas such as the pace-of-

3defined here as the number of offspring produced — no deaths involved (Rice, 2008; Rice and Papadopoulos,
2009; Rice, 2020)
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life syndrome (Mathot and Frankenhuis, 2018; J. Wright et al., 2019) or modern coexistence
theory (Barabás et al., 2018; E. Johnson and Hastings, 2022) is biologically appealing, it is
likely far from trivial and may present a promising avenue for future work.

6.4 Outlook

Actually solving the equations I formulate analytically for equilibrium/stationary state
distributions of p, f , and σ2

f will likely quickly become impossibly difficult if the birth
and death rate functions are complicated. Indeed, previous studies indicate that in high
dimensions, evolutionary birth-death models can exhibit a dizzying array of complicated
behavior, including limit cycles and chaotic trajectories (Doebeli and Ispolatov, 2017), and
innovative future work is needed to develop tractable approximation schemes to handle
these complications. However, while such complicated behavior may present impediments
to formulating exact solutions to the equations I formulate, the point of these equations is
not necessarily to solve them to begin with. Indeed, the most important takeaway from this
thesis is not in the solutions to the equations of section 5.1 but in the formulation and the
equations themselves. The equations I derive are very general, since part II makes essentially
no assumptions other than density dependence, the impossibility of infinite growth starting
from finite population size, and the ability to define per-capita birth and death rates, and
thus, these birth and death rate function(al)s can in general be almost arbitrarily complicated.
They thus apply to a very wide array of biological populations. Further, as we saw in section
5.1, the terms of these equations lend themselves to simple biological interpretation and make
some general qualitative predictions about how evolution should operate in finite, fluctuating
populations. Namely, my equations show that evolution should operate similarly to how it
operates in infinite populations, with the addition of some non-directional fluctuations (this is
just drift) as well as an extra directional force (noise-induced selection). Like the classical Price
equation, the utility of the equations of section 5.1 thus lies not (necessarily) in their solutions
for specific models, but instead in their generality and the fact that their terms help us clearly
think about the various evolutionary phenomena at play in biological populations (Frank,
2012; Luque, 2017; Luque and Baravalle, 2021). The general spirit of this thesis is thus in line
with the general idea of trying to formulate ‘model-independent’ eco-evolutionary theory that
has recently been (rapidly) gaining popularity in the literature (Grafen, 2014; Queller, 2017;
Lion, 2018; Allen and McAvoy, 2019; Rice, 2020; Week et al., 2021; Wickman et al., 2022;
Kuosmanen et al., 2022; Mazzolini and Grilli, 2022; Lion et al., 2023; Allen et al., 2023).
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My formalism here is only a first step, and there are many biologically important factors
that I have neglected in this thesis. My framework works with unstructured populations,
neglecting any potential effects of groups, age, class, sex, developmental stage, or space4, all
of which can lead to very complex and often surprising dynamics. Explicitly incorporating
features such as population structure, sex, and space from first principles in an analytically
tractable framework is a formidable task that may need innovative new mathematical and
biological arguments, and presents a fantastic opportunity for future studies. I have also
neglected any potential complications introduced by genotype-phenotype maps and genetic
processes such as dominance, epistasis, and pleiotropy since my assumptions on the functional
forms of the birth and death rates ((3.10) or (4.9)) should be general enough to incorporate
these effects (in principle) while analyzing specific models.

Descriptions such as the classic Price equation and the equations I present in this
thesis ‘abstract away’ system-specific details and almost inevitably come at the cost of
precision (Levins, 1966; Potochnik, 2018). These approaches are thus intended to complement
empirical studies and modelling approaches that carefully study specific systems and generate
vital knowledge about how these systems behave. To quote Robert Millikan (1924), “Science
walks forward on two feet, namely theory and experiment [...] Sometimes it is one foot
which is put forward first, sometimes the other, but continuous progress is only made by the
use of both - by theorizing and then testing, or by finding new relations in the process of
experimenting and then bringing the theoretical foot up and pushing it on beyond, and so on
in unending alterations.”

4Of course, since position in continuous space is just a special case of a quantitative trait, we have
technically incorporated space in a very limited sense: The formalism of chapter 4 can equally well describe a
finite population of exactly identical individuals moving through one-dimensional space, and so can technically
describe phenomena like range expansion of clonal populations in one dimension. However, I am only noting
this as a technicality - such populations are likely somewhat ‘evolutionarily boring’, since all individuals in
the model must always be exactly identical in all aspects other than spatial location.
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Appendix A

From Itô to Fokker-Planck

Here, I present a simple (informal) derivation of the Fokker-Planck equation for a one-
dimensional Itô process. The result for the multi-dimensional case follows from the same
logic but is more notationally cumbersome.

Consider a one-dimensional real Itô process given by dXt = µ(Xt, t)dt+ σ(Xt, t)dWt that
takes values in an open set Ω ⊆ R and admits a probability density function P (x, t) with
compact support1 in Ω at all times t ∈ [0,∞). Let f : R → R be an arbitrary C2(R) function.
By Itô’s formula, we have:

df(Xt) =

(
µf ′ +

σ2

2
f ′′
)
dt+ σf ′dWt

Writing this in integral form and taking expectations on both sides yields:

E[f(Xt)] = E

 t∫
0

(
µf ′ +

σ2

2
f ′′
)
ds

+ E

 t∫
0

σf ′dWs

 (A.1)

As long as Xt and σ(Xt, t) are reasonably ‘nice’, the stochastic integral in the second term of
the RHS of (A.1) will vanish upon taking an expectation (see 2.1). Using the definition of

1For our biological context you can think of this as just meaning that very extreme values in Ω are so
unlikely that we disallow them entirely
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the expectation value, we are thus left with:

∫
Ω

f(Xt)P (x, t)dx =

∫
Ω

 t∫
0

µf ′ +
σ2

2
f ′′ds

P (x, t)dx

Assuming derivatives and expectations commute2, we can now differentiate with respect to
time on both sides and use the fundamental theorem of calculus to write∫

Ω

f(Xt)
∂P

∂t
(x, t)dx =

∫
Ω

µf ′P (x, t)dx

︸ ︷︷ ︸
M(x,t)

+

∫
Ω

σ2

2
f ′′P (x, t)dx

︸ ︷︷ ︸
N(x,t)

(A.2)

We will now use integration by parts to further evaluate the two parts M(x, t) and N(x, t).
Since P (·, t) has compact support within the open set Ω ⊂ R for any given t > 0, the
function P (x, t) ≡ 0 on ∂Ω and the boundary term of the formula vanishes. Thus, we can
use integration by parts once on M(x, t) to obtain

M(x, t) = −
∫
Ω

f(Xt)

(
∂

∂x
µP (x, t)

)
dx (A.3)

and twice on N(x, t) to obtain

N(x, t) = −1

2

∫
Ω

f ′(Xt)

(
∂

∂x
σ2P (x, t)

)
dx

=
1

2

∫
Ω

f(Xt)

(
∂2

∂x2
σ2P (x, t)

)
dx (A.4)

Substituting (A.3) and (A.4) into (A.2) and collecting terms yields∫
Ω

f(Xt)
∂P

∂t
(x, t)dx =

∫
Ω

f(Xt)

[
− ∂

∂x
(µP (x, t)) +

1

2

∂2

∂x2
(σ2P (x, t))

]
dx

Since this is true for an arbitrary choice of f(x), we are thus led to conclude that the density

2By the Leibniz integral rule, this only requires the functions of (x, t) inside the integrals to be bounded
and C1 in an open subset of Ω× [0,∞)
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function P (x, t) must satisfy:

∂P

∂t
(x, t) = − ∂

∂x
(µ(x, t)P (x, t)) +

1

2

∂2

∂x2
(
(σ(x, t))2P (x, t)

)
(A.5)

Equation (A.5) is the Fokker-Planck equation in one dimension. Using the exact same
strategy, the multidimensional Fokker-Planck equation for the m-dimensional Itô Process
dXt = µ(Xt, t)dt+ σ(Xt, t)dWt can be easily found to be:

∂P

∂t
(x, t) = −

m∑
i=1

∂

∂xi
(µi(x, t)P (x, t)) +

1

2

m∑
i=1

m∑
j=1

∂2

∂xi∂xj
(DijP (x, t)) (A.6)

where D = σσT . Some authors like to define the ‘probability current’ J(x, t), anm-dimensional
function with ith element

Ji(x, t) := µi(x, t)P (x, t)−
1

2

m∑
j=1

∂

∂xj
(DijP (x, t))

In this notation, equation (A.6) can be written in the more compact form:

∂P

∂t
+∇ · J = 0 (A.7)

where ∇· is the divergence operator (also denoted div in some texts). Those familiar
with physics should immediately recognize that equation (A.7) is in the form of a so-called
‘continuity equation’ for a conserved quantity. Continuity equations turn up in various
areas of applied mathematics, most famously in electromagnetism (conservation of charge
from Maxwell’s equations), fluid dynamics (continuity equations for mass of a flowing fluid
from the Euler equations), and molecular diffusion (Fick’s law). This explains the name
‘probability current’ as an analogy to currents in physics such as electrical current or fluid
current. The continuity equation representation also makes it clear that the Fokker-Planck
equation describes the ‘flow of probability’ in the system. In particular, equation (A.7) says
that the total probability in the system is ‘conserved’, and is thus simply a mathematical
formalization of the common-sense idea that whenever the probability of the system of being
in a given state decreases, the probability of it being in some other state must increase (and
vice versa).
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Appendix B

Stochastic trait frequency dynamics using
Itô’s formula

We first recall the version of the multi-dimensional Itô’s formula that will be relevant to us.
Consider an m-dimensional real Itô process Xt given by the solution to

dXt = µ(Xt)dt+ σ(Xt)dWt

where µ : Rm → Rm is the ‘drift vector’ and σ : Rm → Rm×m is the ‘diffusion matrix’. Let
f : Rm → R be an arbitrary C2(Rm) function. Then, Itô’s formula (Øksendal, 1998, Section
4.2) states that the stochastic process f(Xt) must satisfy:

df(Xt) =

[
(∇Xf)

Tµ+
1

2
Tr[σT(HXf)σ]

]
dt+ (∇Xf)

T σdWt (B.1)

where Tr[·] denotes the trace of a matrix, (·)T denotes the transpose, and we have suppressed
the Xt dependence of µ and σ to reduce clutter. Here, ∇Xf is the m-dimensional gradient
vector of f and HXf is the m×m Hessian matrix of f , respectively defined for f([x1, . . . , xm]T)
as:

(∇xf)j =
∂f

∂xj

(Hxf)jk =
∂2f

∂xj∂xk
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In our case, we have the Itô process given by (3.9), which defines how the density of each type
of individual changes over time. We thus have µ(Xt) = A−(Xt) and σ(Xt) = D(Xt)/

√
K.

For each fixed i ∈ {1, 2, . . . ,m}, let us define a scalar function fi : Rm → R as

fi(x) =
xi

m∑
j=1

xj

Thus, fi(Xt) gives us the frequency of type i individuals when the population is described by
the vector Xt. This function is obviously C2(Rm), and we can thus use Itô’s formula (B.1) to
describe how it changes over time. The jth element of the gradient of fi is given by:

(∇xfi)j =
∂

∂xj

 xi
m∑
k=1

xk



=


 1

m∑
r=1

xr

 ∂xi
∂xj

−

 xi(
m∑
r=1

xr

)2


m∑
k=1

∂xk
∂xj


=

1
m∑
r=1

xr

(δij − pi) (B.2)

where we have defined the frequency of the ith type pi = fi(x) and used the fact that ∂xj

∂xk
= δjk.

The jkth element of the Hessian is given by:

(Hxfi)jk =
∂2

∂xj∂xk

 xi
m∑
l=1

xl



=
∂

∂xj

 δik
m∑
r=1

xr

− xi(
m∑
r=1

xr

)2


=

1(
m∑
r=1

xr

)2 (2pi − δij − δik) (B.3)
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Thus, for the first term of (B.1), we have:

(∇Xfi)
T A− =

m∑
j=1

(
(∇xfi)j

)
A−

j

=
1

m∑
r=1

xr

m∑
j=1

(δij − pi)A
−
j

=
1

m∑
r=1

xr

(
A−

i − pi

m∑
j=1

A−
j

)
(B.4)

This term describes the effects of selection and mutation at the infinite population limit.
However, the finiteness of the population adds a second directional term to these dynamics,
described by the second term that multiplies dt in (B.1). To calculate it, we first calculate:

1√
K

(HxfiD)jk =
1√
K

m∑
l=1

(Hxfi)jl (D)lk

=
1

√
K

(
m∑
r=1

xr

)2

m∑
l=1

(2pi − δij − δil) δlk
(
A+

l A
+
k

) 1
4 (B.5)

=
1

√
K

(
m∑
r=1

xr

)2

(
(2pi − δij) (A

+
k )

1
2 − δik

(
A+

i A
+
k

) 1
4

)
(B.6)

=
1

√
K

(
m∑
r=1

xr

)2 (2pi − δij − δik) (A
+
k )

1
2 (B.7)

and thus:

1

K

(
DTHxfiD

)
lk
=

1

K

m∑
j=1

(
DT
)
lj
(HxfiD)jk

=
1

K

(
m∑
r=1

xr

)2

m∑
j=1

δlj
(
A+

l A
+
j

) 1
4 (A+

k )
1
2 (2pi − δij − δik) (B.8)

=
1

K

(
m∑
r=1

xr

)2 (A
+
k )

1
2

(
2pi(A

+
l )

1
2 − (A+

i )
1
2 δil − (A+

l )
1
2 δik

)
(B.9)



106 Eco-evolutionary dynamics of finite populations from first principles

Using this, we see that the trace of this matrix is given by:

1

K
Tr[DTHxfiD] =

1

K

m∑
k=1

(
DTHxfiD

)
kk

=
1

K

(
m∑
r=1

xr

)2

m∑
k=1

(
2pi(A

+
k A

+
k )

1
2 − (A+

i A
+
k )

1
2 δik − (A+

k A
+
k )

1
2 δik

)
(B.10)

=
1

K

(
m∑
r=1

xr

)2

(
2pi

(
m∑
k=1

A+
k

)
− 2A+

i

)
(B.11)

and thus, the second term multiplying dt in (B.1) is given by:

1

2K
Tr[DTHxfiD] =

−1

K

(
m∑
r=1

xr

)2

(
A+

i − pi

(
m∑
k=1

A+
k

))
(B.12)

Finally, denoting dWt = [dW
(1)
t , dW

(2)
t , . . . , dW

(m)
t ]T where each dW (j)

t is an independent one
dimensional Wiener process, we have:

(DdWt)j =
m∑
k=1

DjkdW
(k)
t

=
m∑
k=1

δjk
(
A+

j A
+
k

) 1
4 dW

(k)
t (B.13)

=
(
A+

j

)1/2
dW

(j)
t (B.14)

Thus, using (B.2), we see that the last term on the RHS of (B.1) is given by:

1√
K

(∇Xf)
TDdWt =

1√
K

m∑
j=1

(∇xfi)j (DdWt)j

=
1(

m∑
r=1

xr

)√
K

m∑
j=1

(δij − pi)
(
A+

j

)1/2
dW

(j)
t (B.15)

=
1(

m∑
r=1

xr

)√
K

(
A+

i

)1/2
dW

(i)
t − pi

m∑
j=1

(
A+

j

)1/2
dW

(j)
t (B.16)
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Putting equations (B.4), (B.12) and (B.16) into (B.1) and letting NK(t) =
m∑
r=1

xr we see that

pi = fi(X)t, the frequency of the ith type in the population Xt, changes according to the
equation:

dpi =
1

NK(t)

(
A−

i − pi

m∑
j=1

A−
j

)
dt︸ ︷︷ ︸

K → ∞ prediction

− 1

K

1

N2
K(t)

(
A+

i − pi

(
m∑
k=1

A+
k

))
dt︸ ︷︷ ︸

Directional finite size effects
due to differential turnover rates

+
1√

KNK(t)

[(
A+

i

)1/2
dW

(i)
t − pi

m∑
j=1

(
A+

j

)1/2
dW

(j)
t

]
︸ ︷︷ ︸

Non-directional finite size effects
due to stochastic fluctuations

(B.17)

Plugging the functional forms of (3.10) and the definitions of wi and τi into the definitions of
A−

i and A+
i , we obtain the relations

A−
i = xiwi(x) + µQi(x)

A+
i = xiτi(x) + µQi(x)

(B.18)

Thus, for the first term of (B.17), we have

1

NK(t)

(
A−

i − pi

m∑
j=1

A−
j

)
=

1

NK(t)
[wi(x)xi + µQi(x)]−

pi
NK(t)

m∑
j=1

[wj(x)xj + µQj(x)]

= wi(x)pi +
µ

NK(t)
Qi(x)− pi

m∑
j=1

[
wj(x)pj +

µ

NK(t)
Qj(x)

]

Where we have used the definition of pi from (3.11). Now using the definition of mean fitness
from (3.12) and rearranging terms gives us

1

NK(t)

(
A−

i − pi

m∑
j=1

A−
j

)
= (wi(x)− w)pi + µ

[
Qi(p)− pi

(
m∑
j=1

Qj(p)

)]
(B.19)

where we have defined Qj(p) = Qj(x)/NK(t). Repeating the exact same calculations for the
A+

i terms in the second term of (B.17) now yields equation (3.14) (which is also equation
(5.1)) in the main text.
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Appendix C

A Price-like equation for the variance of a
type-level quantity

Let σ2
f denote the statistical variance of a type-level quantity, defined as:

σ2
f := (f 2)− (f)2 (C.1)

where X is the statistical mean value defined by (3.12). By the product rule, we have

dσ2
f

dt
= 2f

∂f

∂t
+

m∑
i=1

f 2
i

dpi
dt

− d

dt
(f

2
) (C.2)

We will evaluate the RHS term by term. The first term is as simplified as can be without
more information about f . For the second term, we can substitute dpi from (5.1) and use
the same steps used in going from (3.17) to (3.21) to write

m∑
i=1

f 2
i dpi = Cov(w, f 2)dt− 1

KNK

Cov(τ, f 2)dt

+ µ

(
1− 1

KNK(t)

)( m∑
i=1

f 2
i Qi(p)− f 2

m∑
i=1

Qi(p)

)
dt

+
1√

KNK(t)

(
m∑
i=1

(
f 2
i − f 2

)√
A+

i dW
(i)
t

) (C.3)
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For the third term, we need to use Itô’s formula. Here, the relevant version of Itô’s formula
is the one-dimensional version of (B.1). Given a one-dimensional process dXt = S(Xt)dt+∑

j Dj(Xt)dW
(j)
t with S,Dj being suitable real functions and each W (j)

t being an independent
Wiener process, Itô’s formula says that given any C2(R) function g(x), we have the relation:

dg(Xt) =

(
S(Xt)g

′(Xt) +
g′′(Xt)

2

∑
j

D2
j (Xt)

)
dt+

∑
j

Dj(Xt)g
′(Xt)dW

(j)
t (C.4)

In our case, we have a one-dimensional process for the mean value df of the type level
quantity, and the C2(R) function g(x) = x2. Itô’s formula thus says that the third term of
(C.2) is given by:

d(f
2
) =

(
2fS(Xt) +

∑
j

D2
j (Xt)

)
dt+

∑
j

2fDj(Xt)dW
(j)
t (C.5)

where the relevant functions S and Dj can be read off from (5.2). Since the dW terms are
unwieldy, we will denote the contribution of all the dWt terms collectively by dWσ2

f
to reduce

notational clutter and only explicitly calculate these terms at the end. We also note that the
covariance operator is a bilinear form, i.e. given any three quantities X, Y and Z and any
constant a ̸= 0, we have the relations:

Cov(aX, Y ) = aCov(X, Y ) = Cov(X, aY )

Cov(X, Y + Z) = Cov(X, Y ) + Cov(X,Z)

Substituting equations (C.3) and (C.5) into equation (C.2) and using this property of
covariances, we obtain:

dσ2
f = Cov(w, f 2 − 2ff)dt− 1

KNK

(
Cov(τ, f 2 − 2ff)

)
dt+ 2

(
f
∂f

∂t
− f

(
∂f

∂t

))
dt

+ µ

(
1− 1

KNK(t)

)( m∑
i=1

(f 2
i − 2ffi)Qi(p)− (f 2 − 2f

2
)

m∑
i=1

Qi(p)

)
dt

− 1

KN2
K(t)

(
m∑
i=1

(fi − f)2A+
i

)
dt

+ dWσ2
f

(C.6)
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Now, we note that

1

NK

A+
i =

1

NK

(τixi + µQi(x)) (C.7)

= τipi + µQi(p) (C.8)

and thus the third line of (C.6) is

1

KN2
K(t)

(
m∑
i=1

(fi − f)2A+
i

)
dt =

1

KNK

m∑
i=1

(fi − f)2 (τipi + µQi(p)) (C.9)

=
1

KNK

m∑
i=1

(
fi − f

)2
(τipi + µQi(p)) (C.10)

=
1

KNK

(
τ
(
f − f

)2
+ µ

m∑
i=1

(
fi − f

)2
Qi(p)

)
(C.11)

=
1

KNK

(
Cov(τ,

(
f − f

)2
) + τ

(
f − f

)2
+ µ

m∑
i=1

(
fi − f

)2
Qi(p)

)
(C.12)

=
1

KNK

(
Cov(τ,

(
f − f

)2
) + τσ2

f + µ
m∑
i=1

(
fi − f

)2
Qi(p)

)
(C.13)

where we have used the definition of statistical covariance in the second to last line and used
the definition of statistical variance in the last line. Substituting (C.13) into (C.6) and using
Mσ2

f
(p, NK) to denote the contributions of all the mutational terms (i.e. all terms with a µ

factor) for notational brevity, we obtain

dσ2
f = Cov(w, f 2 − 2ff)dt− 1

KNK

(
Cov(τ, f 2 − 2ff) + Cov(τ,

(
f − f

)2
) + τσ2

f

)
dt

+ 2Cov
(
∂f

∂t
, f

)
dt+Mσ2

f
(p, NK)dt+ dWσ2

f

(C.14)
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We can now complete the square inside the covariance terms of the first line of the RHS by
writing f 2 − 2ff = (f − f)2 − f

2 to obtain

dσ2
f =

[
Cov

(
w, (f − f)2

)
− Cov

(
w,
(
f
)2) ]

dt

− 1

KNK

[
Cov

(
τ, (f − f)2

)
− Cov

(
τ,
(
f
)2)

+ Cov(τ,
(
f − f

)2
) + τσ2

f

]
dt

+ 2Cov
(
∂f

∂t
, f

)
dt+Mσ2

f
(p, NK)dt+ dWσ2

f

(C.15)

To simplify the covariance terms of the first line of the RHS, we observe that

Cov
(
w,
(
f
)2)

=
(
w
(
f
)2)− w

((
f
)2)

=
(
f
)2 m∑

i=1

wipi − w
(
f
)2 m∑

i=1

pi

=
(
f
)2
w − w

(
f
)2

= 0

and similarly,
Cov

(
τ,
(
f
)2)

= 0

and thus, using this in (C.15), we see that the rate of change of the variance of any type-level
quantity f in the population satisfies:

dσ2
f = Cov

(
w, (f − f)2

)
dt− 1

KNK

[
τσ2

f + 2Cov
(
τ, (f − f)2

) ]
dt

+ 2Cov
(
∂f

∂t
, f

)
dt+Mσ2

f
(p, NK)dt+ dWσ2

f

(C.16)

This is precisely equation (5.9) in the main text. To calculate the mutation term, we substitute
(C.13) into (C.6) to find

Mσ2
f
(p, NK) = µ

(
m∑
i=1

(
f 2
i − 2ffi − f 2 + 2f

2
)
Qi(p)

)

− µ

KNK

m∑
i=1

(
f 2
i − 2ffi − f 2 + 2f

2
+ (fi − f)2

)
Qi(p)

(C.17)
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We can further simplify the first term of the RHS as

f 2
i − 2ffi − f 2 + 2f

2
= (f 2

i + f
2 − 2ffi)− (f 2 − f

2
)

= (fi − f)2 + σ2
f

and similarly, the second term as

f 2
i − 2ffi − f 2 + 2f

2
+ (fi − f)2 = 2(fi − f)2 + σ2

f

thus, the contributions of mutations to the change in the variance of f are given by

Mσ2
f
(p, NK) = µ

(
m∑
i=1

(
(fi − f)2 + σ2

f

)
Qi(p)

)

− µ

KNK

m∑
i=1

(
2(fi − f)2 + σ2

f

)
Qi(p)

(C.18)

which after slight rearrangement becomes

Mσ2
f
(p, NK) = µ

(
m∑
i=1

[(
1− 2

KNK

)
(fi − f)2Qi(p)

]
+ σ2

f

(
1− 1

KNK

) m∑
i=1

Qi(p)

)
(C.19)

which is equation (5.10) in the main text. For the dW terms, we can use equations (C.3) and
(C.5) to calculate:

dWσ2
f
=

1√
KNK(t)

(
m∑
i=1

(
f 2
i − f 2 − 2f(fi − f)

)√
A+

i dW
(i)
t

)
(C.20)

=
1√

KNK(t)

(
m∑
i=1

(
f 2
i − f 2 − 2ffi − 2f

2
)√

A+
i dW

(i)
t

)
(C.21)

=
1√

KNK(t)

(
m∑
i=1

(
fi − f

)2√
A+

i dW
(i)
t

)
(C.22)

which is equation (5.11) in the main text.
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Appendix D

Some Examples

This appendix provides several examples of the birth-death processes studied in this thesis.
The material covered in this thesis, including the examples in this Appendix, are currently
being written up for publication. Consequently, the GitHub repository containing the scripts
used to make the plots presented below is currently private. The repository will be made
public after publication, and you should be able to access it via this link (which will not work
until I make the repository public) if you are reading this after the material is published;
Until then, scripts are available on request, just drop me an email.

D.1 An example in one dimension: The stochastic logistic

equation

Here, we analyze example 1. To recap, we had a population of individuals that exhibit
a constant per-capita birth rate λ > 0, and a per-capita death rate that had the linear
density-dependence µ+ (λ− µ) n

K
, where µ and K are positive constants. Thus, we have the

birth and death rates
b(n) = λn

d(n) =
(
µ+ (λ− µ)

n

K

)
n

(D.1)
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Here, K is the system-size parameter. Introducing the population density x := n/K, we
obtain

bK(x) =
1

K
b(n) =

1

K
λKx

dK(x) =
1

K
d(n) =

1

K

(
µ+ (λ− µ)

Kx

K

)
Kx

Thus, we have
A±(x) = bK(x)± dK(x) = x (λ± ((µ+ (λ− µ)x)))

Defining r = λ − µ and v = λ + µ and using equation (2.14), we see that the ‘mesoscopic
view’ of the system is given by the solution of the SDE

dXt = rXt(1−Xt)dt+

√
Xt(v + rXt)

K
dWt (D.2)

From equation (2.15), we see that the deterministic dynamics are

dx

dt
= A−(x) = rx(1− x) (D.3)

showing that in the infinite population limit, we obtain the logistic equation. This derivation
also makes it clear that two systems with very different stochastic dynamics can nevertheless
converge to the same infinite population limit (D.3), since equation (D.3) only depends on
the difference λ − µ. To illustrate the effects of this seemingly innocent fact, figure D.1
compares two simulations which have the same value of λ− µ but a ten-fold difference in
λ + µ. As is clear from the figure, though both populations have the same behavior at
the infinite population limit, populations with a higher value of λ+ µ exhibit much wilder
fluctuations and are therefore more prone to stochastic extinction. This is the root cause of
the noise-induced selection that occurs in higher dimensions, discussed in detail in part III.

Letting α(t) be the solution of the logistic equation (D.3), We can Taylor expand A±(x)

for the weak noise approximation, and we find:

A−
1 (x) =

d

dx
(rx(1− x))

∣∣∣∣
x=α

= r(1− 2α(t))

A+
0 (x) = α(t)(v + rα(t))
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Figure D.1: Comparison of time series produced by Gillespie simulations of the
stochastic logistic equation for two different parameter values. Simulations with the
parameter values λ = 4, µ = 2 are plotted in red, and simulations with the parameter values
λ = 31, µ = 29 are plotted in blue. Both simulations have K = 200. The infinite population
limit of both simulations is plotted in black dotted lines. The graph shows 10 realizations
each for the two sets of parameter values.

Thus, the weak noise approximation of D.1 is given by

Xt = α(t) +
1√
K
Yt (D.4)

where the stochastic process Yt is an Ornstein-Uhlenbeck process given by the solution to the
linear SDE

dYt = A−
1 (t)Ytdt+

√
A+

0 (t)dWt

⇒ dYt = r(1− 2α(t))Ytdt+
√
α(t)(v + rα(t))dWt (D.5)

The time series predicted by these three processes look qualitatively similar and all seem to
fluctuate about the deterministic steady state (Figure D.2). The deterministic trajectory
(D.3) has two fixed points, one at x = 0 (extinction) and one at x = 1 (corresponding to
a population size of n = K). For r > 0, x = 0 is unstable and x = 1 is a global attractor,
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Figure D.2: Comparison of a single realization of the exact birth-death process (D.1),
the deterministic trajectory (D.3), the non-linear Fokker-Planck equation (D.2), and the
weak noise approximation (D.5) for (A) K = 500, (B) K = 1000, and (C) K = 10000.
λ = 2, µ = 1 for all thee cases.

meaning in the deterministic limit, when r > 0, all populations end up at x = 1 given enough
time. The stochastic dynamics (D.2) and (D.5), however, depend not only on r, but also
on v, the sum of the birth and death rates. It has been proven that Xt = 0 is the only
recurrent state for the full stochastic dynamics (D.2), meaning that every population is
guaranteed to go extinct1 given enough time (Nåsell, 2001), thus illustrating an important
difference between finite and infinite populations. Xt = 0 is also an ‘absorbing’ state since
once a population goes extinct, it has no way of being revived in this model. However, if
K is large enough, the eventual extinction of the population may take a very long time. In
fact, we can make the expected time to extinction arbitrarily long by making K sufficiently
large. Thus, for moderately large values of K, it is biologically meaningful only to look
at a weaker version of the steady state distribution by imposing the condition that the
population does not go extinct and looking at the ‘transient’ dynamics (Hastings, 2004).
Conditioned on non-extinction, the solution to (D.2) has a ‘quasistationary’ distribution about
the deterministic attractor Xt = 1, with some variance reflecting the effect of noise-induced
fluctuations in population size (Nåsell, 2001) due to the finite size of the population. The
weak-noise approximation (D.5) implicitly assumes non-extinction by only measuring small
fluctuations from the deterministic solution to (D.3) and thus, at steady state, naturally
describes a quasistationary distribution centered about Xt = 1. The steady-state density
(probability density function as t→ ∞) of the exact birth-death process (D.1) is compared

1This can be proven using tools from Markov chain theory. For those interested, the proof uses ergodicity
to arrive at a contradiction if any state other than 0 exhibits a non-zero density at steady state.
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Figure D.3: Comparison of the steady-state densities given by (D.1), (D.2), and (D.5)
for (A) K = 500, (B) K = 1000, and (C) K = 10000. λ = 2, µ = 1 for all thee cases. Each
curve was obtained using 1000 independent realizations.

with that predicted by (D.2) and (D.5) for various values of K in figure D.3.

D.2 An example for discrete traits: Lotka-Volterra and

matrix games in finite populations

The methods outlined in the above section have recently been used to study the population
dynamics of a finite population playing a so-called ‘matrix game’ (An evolutionary game
for which you can write down a payoff matrix) with 2 pure strategies (Tao and Cressman,
2007). Based on the interpretation of what each type represents, this is mathematically
equivalent to studying frequency-dependent selection on a one-locus two-allele gene (with a
bijective genotype-phenotype map and no mutations) or studying two-species competitive
Lotka-Volterra dynamics, as we will show below. The stochastic Lotka-Volterra competition
model shown below has also been proved to be equivalent to an m-allele Moran model under
certain limits (Constable and McKane, 2017).

Let us imagine a population with m types of individuals that are interacting according
to some ecological rules. Let the state of the population be characterized by the vector
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n(t) = [n1(t), n2(t), . . . , nm(t)]
T, where ni(t) is the number of type i individuals at time t.

Let the birth and death rates of the ith type be given by:

bi(n) =

(
λ+

1

K

(
m∑
j=1

βijnj

))
ni

di(n) =

(
µ+

1

K

(
m∑
j=1

δijnj

))
ni

(D.6)

where K > 0 is our system size parameter (and represents a global carrying capacity across
all types), λ > 0 and µ > 0 are suitable positive constants representing the baseline natality
and mortality common to all types, and βij and δij are constants describing the effect of
type j individuals on the birth and death rate of type i individuals respectively. The sign
of Mij := βij − δij determines whether type j has a net positive or negative effect on the
growth of type i. In ecological communities, this is a per-capita ecological interaction effect.
In game-theoretic terms, we can interpret Mij as the payoff obtained by a type j individual
playing against a type i individual. I assume that |Mij| ≪ K. The values Mij are often
collected in an m×m matrix M called the ‘payoff matrix’ (in evolutionary game theory) or
‘interaction matrix’ (in Lotka-Volterra models). Lotka-Volterra models also frequently assume
that the diagonal elements Mii are all equal, though I will not make that assumption here.

Going from population numbers n to densities x = n/K, we obtain the birth and death
rates:

b
(K)
i (x) =

(
λ+

m∑
j=1

βijxj

)
xi

d
(K)
i (x) =

(
µ+

m∑
j=1

δijxj

)
xi

(D.7)

Thus, we have

A±
i = xi

(
(λ± µ) +

m∑
j=1

(βij ± δij)xj

)
Defining r := λ−µ, ν := λ+µ, and Tij := βij + δij , and matching terms with equation (3.10),
we can identify that we have µ = 0 and

wi(x) = r +
m∑
j=1

Mijxj (D.8)
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τi(x) = ν +
m∑
j=1

Tijxj (D.9)

From equation (3.9), we see that the ‘mesoscopic’ description of the system is the m-
dimensional SDE given by

dXt = A−(Xt)dt+
1√
K

D(Xt)dWt (D.10)

where
A−

i = (Xt)iwi(Xt)

and
(DDT)i = (Xt)iτi(Xt)

From (3.16), we see that the infinite population limit of our model is a set of m coupled
ODEs given by

dxi
dt

= xiwi(x) = xi

(
r +

m∑
j=1

Mijxj

)
(D.11)

These are precisely the Lotka-Volterra equations for a system of m species. If p(t) =

[p1(t), . . . , pm(t)]
T is the frequency vector at time t and NK(t) =

∑
i xi(t), then the mean

fitness is given by

w(t) =
m∑
i=1

wipi (D.12)

=
m∑
i=1

(
r +

m∑
j=1

Mijxj

)
pi (D.13)

= r +
m∑
i=1

pi

(
m∑
j=1

Mijxj

)
(D.14)

where we have used the fact that
∑

i pi = 1 in the last line. Using (3.17) to write down the
equations for the frequencies pi, we obtain

1

NK(t)

dpi
dt

= [(Mp)i − p ·Mp] pi (D.15)

which is the familiar version of the replicator equation seen in most textbooks, with an extra
NK(t) factor to account for the fact that

∑
i xi is allowed to fluctuate in our model. If instead
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NK was a constant for all time, it could simply be absorbed into the definition of the payoff
matrix M to obtain exactly the replicator equation as presented in most ecology/evolution
textbooks. Both the stochastic dynamics (D.10) and the deterministic limit (D.11) can be
simplified from an m dimensional system to an m− 1 dimensional system by a coordinate
transformation that projects the dynamics onto an appropriate curve: If we go from the
variables x1, . . . , xm to the variables p1, . . . , pm−1, NK , we can exploit the fact that NK varies
much less than the pi terms to project the system onto a ‘slow manifold’ in which NK

is approximately constant, thus obtaining an m − 1 dimensional system of equations and
recovering the relation between the Lotka-Volterra equations for m species and the replicator
equation for m−1 tactics (Constable and McKane, 2017; Parsons and Rogers, 2017). However,
I will not explore such dimensional reduction techniques further in this manuscript, and refer
the reader to Constable et al., 2013 and Parsons and Rogers, 2017 for a review of the ideas
of (stochastic) dynamics on slow manifolds.

In frequency space, the complete mesoscopic description for the stochastic dynamics can
be similarly calculated in terms of the matrices M and T, and will yield:

dpi = NK(t)

(
[(Mp)i − p ·Mp] pi −

1

KNK

[(Tp)i − p ·Tp] pi

)
dt+

1√
K

(
pi(Tp)i + p2i

m∑
j=1

(Tp)j

)1/2

dWt

(D.16)

We can also carry out the weak noise approximation for this system. Let the solution to
the equations (D.11) be given by a(t) = [a1(t), . . . , am(t)]

T. For the weak noise approximation,
we can Taylor expand A±

i and use (3.40) to compute the directional derivative as:

Di = yiwi(a) + ai

m∑
k=1

yk

(
∂wi

∂xk

∣∣∣∣
x=a(t)

)
(D.17)

= yiwi(a) + ai

m∑
k=1

yk

(
∂

∂xk
(r +

m∑
j=1

Mijxj)

∣∣∣∣
x=a(t)

)
(D.18)

= yiwi(a) + ai

m∑
k=1

ykMik (D.19)

⇒ Di = yiwi(a) + aiwi(y)− rai (D.20)

where we have used the fact that wi(y) = r +
m∑
k=1

ykMik (from (D.8)) in the last step. Thus,
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in the weak noise approximation of our process, the dynamics are given by

x(t) = a(t) +
1√
K

y(t) (D.21)

where the stochastic fluctuations y(t) satisfy the linear Fokker-Planck equation

∂P

∂t
(y, t) =

m∑
i=1

(
− ∂

∂yi
{(yiwi(a) + aiwi(y)− rai)P (y, t)}+

1

2

(
ai

(
ν +

m∑
j=1

Tijaj

))
∂2

∂yi2
P (y, t)

)
(D.22)

Using (D.20) in (3.34), we see that the fluctuations are expected to evolve as:

d

dt
E[yi] = wi(a)E[yi] + ai

m∑
k=1

MikE[yk] (D.23)

or, in matrix form:

d

dt



E[y1]

E[y2]

...

E[yi]

...

E[ym]



=



(r +
m∑
j=1

M1jaj + a1M11) a1M12 a1M13 . . . . . . . . . a1M1m

a2M21 (r +
m∑
j=1

M2jaj + a2M22) a2M23 . . . . . . . . . a2M2m

... . . . ...

aiMi1 aiMi2 aiMi3 . . . (r +
m∑
j=1

Mijaj + aiMii) . . . aiMim

... . . . ...

amMm1 amMm2 amMm3 . . . . . . . . . (r +
m∑
j=1

Mmjaj + amMmm)





E[y1]

E[y2]

...

E[yi]

...

E[ym]


(D.24)

The eigenvalues of the first matrix on the RHS will tell us whether the fixed point E[yi] = 0 ∀ i
(the only fixed point of this system) is stable, or whether fluctuations are expected to grow
(up to the point where the fluctuations are so large that the WNA is no longer valid). In the
m = 2 case, Tao and Cressman, 2007 have shown that E[yi] = 0 ∀ i is a stable fixed point for
this system iff the point y is an ESS (in the usual game-theoretic sense) for the matrix game
defined by the payoff matrix M.

D.3 An example of systematic deviations from neutrality

despite equal fitness due to noise-induced selection

To illustrate the biasing effects of noise-induced selection in otherwise neutral dynamics,
I will use a simple 2 species Lotka-Volterra competition-like model where the effects of
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competition are on birth rates of one species but on the death rates of the other.

To motivate this, consider a community that contains two types of birds, say type 1
and type 2. These birds compete for limited resources, but in a peculiar manner: Though
the two birds feed on different food sources, the trees that type 1 birds use for nesting are
the same as those that the type 2 birds rely on for food. Both types are fiercely territorial
and do not tolerate other individuals of either type on either their nesting or feeding sites.
Thus, competition between the two types affects the birth rate of type 1 birds (because they
can’t find good nesting sites) but the death rate of type 2 birds (because of starvation),
whereas intratype competition affects the death rate in both cases (due to competition for
food sources). Occasionally, each type can give birth to babies of the other type due to
mutations. Let us construct the simplest possible model for such a system.

Let each type of bird have a constant per-capita intrinsic birth rate (rate of birth of
individuals, not rate at which individuals give birth) of 1 due to reproduction. Additionally,
type 1 birds face a reduction in birth rates due to competition with type 2 birds. Let
us assume that the magnitude of this competition (per-capita) is equal to the per-capita
competition experienced from other individuals of the same type. Both types have some
additional birth rate due to rare mutations of the other type, parameterized by a mutation
rate µ > 0. Let ni be the number of type i individuals (which may vary over time). Assuming
trees and birds are both randomly distributed through the landscape, we arrive at the birth
rates

b1(n1, n2) = n1 + µn2 −
n1n2

K

b2(n1, n2) = n2 + µn1

(D.25)

Here, the n1n2/K term represents the effect of competition between types; The product
n1n2 quantifies how often a type 1 bird and a type 2 bird are expected to interact, and
K is a carrying capacity for the habitat (in analogy to logistic growth or Lotka-Volterra
competition), and can be thought of as a proxy for the amount of tree cover in the landscape.

For the death rates, I assume that the effect of intra-type competition on the death rate
is linearly density-dependent, and thus arrive at the equations:

d1(n1, n2) =
n2
1

K

d2(n1, n2) =
n2
2

K
+
n1n2

K

(D.26)
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Note that the effect of competition between types manifests here in an increased death rate
of type 2 birds due to starvation.

Moving to density space via the change of variables xi = ni/K, letting x = [x1, x2]
T, and

comparing terms with equations (3.10), we can see that the per-capita fitness wi of each type
is:

w1(x) = w2(x) = 1− x1 − x2

The two types of birds have the same fitness! This implies that w1 = w2 = w and the selection
term in (3.17) vanishes. Since mutation rates are symmetric (with rate µ for both 1 → 2

and 2 → 1), we may intuitively expect that at equilibrium, both types are present in equal
proportion in the population, i.e. x1 = x2 = 1/2 at equilibrium. Indeed, it is easy to check
that this is the only fixed point in the infinite population limit.

However, if we now compute the per-capita turnover rates τi of each type, we see that we
have

τ1(x) = 1 + x1 − x2

τ2(x) = 1 + x1 + x2

Thus, τ1 < τ2 whenever the population contains both types of individuals, and from equation
(5.1), we know that this means noise-induced selection favors type 1 over type 2 in finite,
fluctuating populations.

Direct simulations of the individual-based model indeed reveal that for low values of
K, the fraction of individuals in the population that are of type 1 is significantly biased to
be greater than 0.5, showing the effect of noise-induced selection (Figure D.4). This bias
disappears for high values of K, as expected.

For this model, we can in fact quantitatively derive the effects of noise-induced selection
by explicitly calculating each term of equation (5.1). Let p = x1/(x1 + x2) be the frequency
of type 1 individuals and let q = 1− p. Then, it is easy to check by direct substitution of our
functional forms that we have

w = w1(x) = w2(x)

τ = 1 + x1 + x2(q − p)
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Figure D.4: (A) Time series and (B) Density estimates for p, the fraction of type 1
individuals in the population for various values of K, obtained from a direct individual-based
simulation of the model defined by equations (D.25) and (D.26), simulated via the (exact)
Gillespie algorithm. Dotted lines are at p = 0.5. At high K, the population conforms to
deterministic (infinite population) predictions, but at low K, the distribution is biased towards
p > 0.5. The time series are from single realizations. The density plots in panel (B) are
estimated from 100 independent realizations, each of which were run for 104 timesteps. All
simulations were initialized with n1 = n2 = K/2. In all simulations, µ = 0.05.

µQi(p) = µpj , where i ̸= j

µ(Q1(p)− p

(
2∑

j=1

Qj(p)

)
) = µ(q − p)

And thus, equation (5.1) becomes

dp =

[
2

K
p2q + µ

(
1− 1

KNK

)
(q − p)

]
dt+

1√
KNK(t)

[
q
√
A+

1 dW
(1)
t − p

√
A+

2 dW
(2)
t

]
(D.27)

where A+
i = xiτi(x)+µQi(p) and each W (i)

t is an independent Wiener process. This equation
clearly shows the biasing effect of noise-induced selection in the first component of the dt
term of the RHS. Since p2(1− p) > 0 for p ∈ (0, 1), this term always tends to increase the
fraction of type 1 individuals in the population. Note that the difference in fitness between
the two types remains zero if every competition term (i.e. every ninj/K term) is multiplied
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by some constant α > 0 parameterizing the strength of competition, meaning that the two
types still have equal fitness. However, this constant affects the strength of noise-induced
selection, and the corresponding term in equation D.27 becomes 2αp2q/K instead of 2p2q/K.
Thus, for α > 1, the strength of noise-induced selection (and thus the extent to which the
distribution of types in the population is biased in favor of type 1 in plots like D.4) can
be made arbitrarily high simply by modulating the strength of competition. The second
component in the dt term captures the effects of mutations, and simply reflects the fact that
we assumed that (type 1) → (type 2) and (type 2) → (type 1) mutations occur at the same
rate µ, and thus, the net effect of mutational effects depends on the difference between the
frequencies of the two types and flows towards the type with lower frequency. Finally, the two
dW

(i)
t terms are non-directional and vanish upon taking an expectation over the probability

space, and therefore have no net contribution other than ‘blurring out the results’ if we look
at the dynamics averaged over many realizations.

D.4 Interlude: Detecting modes in quantitative trait dis-

tributions through Fourier analysis

In Chapter 4, we used various approximations to arrive at the linear functional Fokker-
Planck equation

∂P

∂t
(ζ, t) =

∫
T

(
− δ

δζ(x)

{
Dζ [A−](x)P (ζ, t)

}
+

1

2
A+(x|ψ) δ2

δζ(x)2
{P (ζ, t)}

)
dx (D.28)

for describing stochastic fluctuations ζ from the deterministic solution obtained by solving
(4.8). Our goal is now to find a method to effectively detect and describe evolutionary branches
(modes in trait space, corresponding to individual morphs) for this process. Following the
methods used by Tim Rogers and colleagues for various special cases (Rogers et al., 2012a;
Rogers et al., 2012b; Rogers and McKane, 2015), we will do this in a general manner by
measuring the autocorrelation of the distribution of the population over trait space, a task
made easier by moving to Fourier space. Specifically, a convenient theorem due to Weiner
and Khinchin relates the autocorrelation of a probability distribution to its power spectral
density via Fourier transformation. This has been extensively used in spatial ecology, and we
too will make use of it here. We will thus restrict ourselves to cases in which we can express
our focal function ϕ in terms of the Fourier basis {eikx}k∈Z (Figure D.5). For example, this
can be done by restricting ourselves to cases where T is an interval with ‘periodic boundary
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Figure D.5: Schematic description of Fourier analysis. A function ϕ(x) (shown in
red) over the trait space can be decomposed as the sum of infinitely many Fourier modes
(shown in blue) ϕk. In the Fourier dual space, we can look at the peaks of each of these
Fourier modes: The magnitude of ϕk tells us how much it contributes to the actual function
of interest ϕ.

conditions’ (i.e. we will extend all our functions from T to R in a way that they appear
periodic with period given by the length of the interval T ). We may also need to restrict
ourselves to a ‘nice’ subspace of M(T ), for example by intersecting with L2(T ). In any case,
we will assume all the prerequisites required for a Fourier basis expansion are satisfied. If
Dζ [A−] is a translation-invariant2 linear operator, then exp(ikx) acts as an eigenfunction,
significantly simplifying the calculations. We therefore assume that Dζ [A−] takes the form:

Dζ [A−](x, t) = L[ζ(x, t)]

for a translation-invariant linear operator L that only depends on x and t. This is not as
restrictive as it initially sounds. For example, both the Laplacian operator and the convolution
operator are linear and translation invariant. The presence of phenotypic clustering and
polymorphisms can be analyzed by examining the power spectrum of P̃0(ζ, s) over the trait
space, which is precisely what we will do.

2This is horrible nomenclature by the mathematicians. Though ‘invariant’ is the conventional name for
this concept, the intended meaning is not really invariant but ‘equivariant’. Formally, let F be a suitable
function space of real valued functions. For any c ∈ R, let Tc : F → F be the translation operator on
this space, defined by Tc[f(x)] = f(x+ c). An operator L : F → F is said to be translation-invariant if it
commutes with Tc for every c ∈ R, i.e. Tc[L[f ]] = L[Tc[f ]] ∀ f ∈ F ∀ c ∈ R.
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As mentioned before, we assume that ζ, and A+(x|ψ) admit the Fourier basis representa-
tions:

ζ(x, t) =
∞∑

k=−∞

eikxζk(t) ; ζk(t) =

∫
T

ζ(x, t)e−ikxdx

A+(x|ψ) =
∞∑

k=−∞

eikxAk(t) ; Ak(t) =

∫
T

A+(x|ψ)e−ikxdx

(D.29)

In this case, the functional derivative operator obeys:

δ

δζ(x)
=

∞∑
k=−∞

e−ikx ∂

∂ζk
(D.30)

and since L is linear and translation-invariant, we also have the relation3:

L[ζ] =
∞∑

k=−∞

Lkζke
ikx (D.31)

where
Lk = e−ikxL[eikx]

Lastly, by definition of Fourier modes, we have, for any differentiable real function F and any
fixed time t > 0:

∂

∂ζj(t)
F (ζi(t)) = δijF

′(ζj(t)) (D.32)

where δij is the Kronecker delta symbol. Using (D.29), (D.30), and (D.31) in (D.28), we get,
for the first term of the RHS:

−
∫
T

δ

δζ(x)
{L[ζ(x, t)]P (ζ, t)} dx

= −
∫
T

∑
k

e−ikx ∂

∂ζk
{
∑
n

einxLnζnP}dx

= −
∫
T

∑
k

∑
n

e−i(k−n)x ∂

∂ζk
{LnζnP}dx

3This is because exp(ikx) acts as an eigenfunction for translation invariant linear operators, and therefore,
for any function φ =

∑
φk exp(ikx), we have the relation L[φ] = L[

∑
φk exp(ikx)] =

∑
φkL[exp(ikx)] =∑

φkLk exp(ikx), where Lk is the eigenvalue of L associated with the eigenfunction exp(ikx). It is helpful
to draw the analogy with eigenvectors of matrices and view Lkφk as the projection of L[φ] along the kth
eigenvector ek = exp(ikx).
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= −2π
∑
k

Lk
∂

∂ζk
{ζkP} (D.33)

and for the second: ∫
T

∑
k

eikxAk

(∑
m

∑
n

e−i(m+n)x ∂

∂ζm

∂

∂ζn
P

)
dx

=

∫
T

∑
k

∑
m

∑
n

ei(k−m−n)xAk
∂

∂ζm

∂

∂ζn
{P}dx

= 2π
∑
m

∑
n

Am+n
∂

∂ζm

∂

∂ζn
{P} (D.34)

Substituting (D.33) and (D.34) into (D.28), we see that the Fokker-Planck equation (D.28)
in Fourier space reads:

∂P

∂t
= −2π

∑
k

Lk
∂

∂ζk
{ζkP}+ π

∑
m

∑
n

Am+n
∂

∂ζm

∂

∂ζn
{P} (D.35)

It is important to remember that since ζ(x, t) is a stochastic process, ζi is really a stochastic
process and thus ζi(t) is actually shorthand for the random variable (ζi)t(ω), where ω is a
sample path in the Fourier dual of our original probability space. Multiplying both sides of
(D.35) by ζr and integrating over the probability space to obtain expectation values, we see
that

d

dt
E[ζr] = −2π

∑
k

∫
ζrLk

∂

∂ζk
{ζkP}dω + π

∑
m

∑
n

Am+n

∫
ζr

∂

∂ζm

∂

∂ζn
(P )dω

= 2π
∑
k

Lk

∫
ζk
∂ζr
∂ζk

Pdω + π
∑
m

∑
n

Am+n

∫
∂2ζr

∂ζm∂ζn
Pdω

= 2πLrE[ζr] (D.36)

where we have used integration by parts and neglected the boundary term in the second step
(assuming once again that P decays rapidly enough near the boundaries that this is doable),
and then used (D.32) to arrive at the final expression. Similarly, multiplying (D.35) by ζrζs,
integrating over the probability space and using integration by parts, we get:

d

dt
E[ζrζs] = 2π

∑
k

Lk

∫
ζkP

∂

∂ζk
{ζrζs}dω + π

∑
m

∑
n

Am+n

∞∫
−∞

P
∂

∂ζm

∂

∂ζn
{ζrζs}dω
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= 2π(Lr + Ls)E[ζrζs] + π(A2r + A2s) (D.37)

At the stationary state, the LHS must be zero by definition, and we must therefore have, for
every r, s ∈ Z,:

E[ζrζs] = − A2r + A2s

2(Lr + Ls)
(D.38)

Recall that the Fourier modes of any real function φ must satisfy φ−r = φr. Since ζ, A and
L are all real, we can substitute s = −r in equation (D.38) to obtain the autocovariance
relation:

E[|ζr|2] = −Re(A2r)

2Re(Lr)
(D.39)

The presence of phenotypic clustering can be detected using the ‘spatial covariance’ of
our original process ϕ, defined as (Rogers et al., 2012a):

Ξ[x] = m(T )

∫
T

E[ϕ∞(x)ϕ∞(y − x)]dy (D.40)

where ϕ∞ is the stationary state distribution of {ϕt}t and m is the Lebesgue measure. We
can use a spatial analogue of the Wiener-Khinchin theorem to calculate:

Ξ[x] = m(T )

∫
T

ψ∞(x)ψ∞(y − x)dy +
1

K

∞∑
r=−∞

E[|ζr|2]eirx
 (D.41)

where the expectations in the second term are for the stationary state. A flat Ξ[x] indicates
that there are no clusters, and peaks indicate the presence of clusters.

D.5 An example for quantitative traits: The quantitative

logistic equation

Recall the birth and death functionals given by (4.2). That is, the functionals

b(x|ν) = r

∫
T

m(x, y)ν(y)dy; m(x, y) = exp

(
−(x− y)2

σ2
m

)

d(x|ν) = ν(x)

Kn(x)

∫
T

α(x, y)ν(y)dy; α(x, y) = exp

(
−(x− y)2

σ2
α

) (D.42)
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corresponding to an asexual population having a constant (per-capita) birth rate r and
mutations controlled by a Gaussian kernel m(x, y). The death rate is density-dependent,
mediated by a Gaussian competition kernel α(x, y), and also contains a phenotype-dependent
carrying capacity controlled by n(x), scaled by a constant K. The biological interpretation
of the death rate is through ecological specialization for limiting resources - individuals have
different intrinsic advantages (controlled by n(x)), and experience greater competition from
conspecifics that are closer to them in phenotype space (controlled by α(x, y)). In terms of
the scaled variable ϕ = Kν, these functions read:

bK(x|ϕ) =
1

K
b(x|ν) = 1

K

r ∫
T

m(x, y)Kϕ(y)dy


dK(x|ϕ) =

1

K
d(x|ν) = 1

K

Kϕ(x)
Kn(x)

∫
T

α(x, y)Kϕ(y)dy

 (D.43)

Thus, using equation (4.8), the deterministic trajectory becomes:

∂ψ

∂t
(x, t) = r

∫
T

m(x, y)ψ(y, t)dy − 1

n(x)
ψ(x, t)

∫
T

α(x, y)ψ(y, t)dy (D.44)

Note that if we employ the change of variables Ψ = Kψ to go back from MK (i.e ϕ(t)) to M
(i.e ν(t)), we recover the familiar quantitative logistic equation as the deterministic limit:

∂Ψ

∂t
(x, t) = r

∫
T

m(x, y)Ψ(y, t)dy − Ψ(x, t)

Kn(x)

∫
T

α(x, y)Ψ(y, t)dy

≈ rΨ(x, t)− Ψ(x, t)

K(x)

∫
T

α(x, y)Ψ(y, t)dy +Dm∇2
xΨ(x, t)

where K(x) = Kn(x) is the carrying capacity experienced by an individual of phenotype x,
and Dm = rσ2

m/2 measures the ‘diffusion rate’ of the population in trait space.

We can also calculate Dζ [A−] as

Dζ [A−] =
d

dϵ

r ∫
T

m(x, y)(ψ(y) + ϵζ(y))dy − ψ(x) + ϵζ(x)

n(x)

∫
T

α(x, y)(ψ(y) + ϵζ(y))dy

∣∣∣∣
ϵ=0
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= r

∫
T

m(x, y)ζ(y)dy − 1

n(x)

ψ(x)∫
T

α(x, y)ζ(y)dy + ζ(x)

∫
T

α(x, y)ψ(y)dy


Using this in equation (D.41), Rogers et al., 2012a (and later Rogers and McKane, 2015)
have shown that the contribution of demographic stochasticity can lead to inhibition of
branching, and thus, while the population undergoes infinitely many branching events in the
infinite population prediction, this does not happen for finite populations. An alternative

Figure D.6: Effect of population size on evolutionary branching. Two different
realizations of the system (4.2) with n(x) = exp(−x2/σ2

K). Simulation parameters are
σK = 1.9, σα = 0.7, σ2

m = 0.05 for top: K = 1000 and bottom: K = 10000. Each point
represents an individual. Note that the model on top remains monomorphic whereas the model
on the bottom exhibits evolutionary branching, where an initially monomorphic population
evolves to become dimorphic.

‘moment-based’ method that avoids moving to Fourier space has also been used to study
this phenomenon of evolutionary branching and clustering in finite populations (Wakano
and Iwasa, 2013; Débarre and Otto, 2016). These studies use the equation we derived in
section 5.1.3 for the variance of the trait in the population and compute the conditions
required for the variance to ‘explode’ (Equation A.23 in Débarre and Otto, 2016 is exactly
equivalent to equation (5.9) for their choice of functional forms upon converting their change
in variance to an infinitesimal rate of change i.e. a derivative). The method itself is relatively
straightforward in principle (complications arise if the particular models are complicated) and
I therefore do not explore it further in this thesis, but the broad results of such moment-based
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approaches is in agreement with the predictions made from the spectral methods employed
in Rogers et al., 2012a and Rogers and McKane, 2015.

It is left as an exercise for the reader to verify by the same steps that if we instead have
the birth rate functional b(x|ϕ) = λ

∫
m(x, y)ϕ(y)dy (with m(x, y) as defined in (4.2)) and

the death rate functional d(x|ϕ) = ϕ(x) (µ+ (λ− µ)ϕ(x)/K), the infinite-population limit
yields the famous Fisher-KPP equation with growth rate r = λ− µ and diffusion constant
D = λσ2

m/2.



Appendix E

A more elegant representation of the stochas-
tic integrals of Chapter 5

In chapter 5, we arrived at three stochastic differential equations (equations (5.1), (5.2),
and (5.9)) for the frequency of a type, the population mean value of a type-level quantity,
and the population variance of a type-level quantity. All three of these equations contained
stochastic fluctuation terms which were of the form of a sum of stochastic integrals of several
independent functions against independent Wiener processes. In this appendix, I will derive
a more elegant representation of these terms via a useful lemma. I am sure this lemma is
well-known, but I could not easily find a reference for it and soon realized it is quicker to
prove it myself than find the appropriate reference text, and so I present a short proof below.

Lemma. Let m ∈ N. Let W (1)
t ,W

(2)
t , . . . ,W

(m)
t be m independent one-dimensional Wiener

processes. Let g1(x), g2(x), . . . , gm(x) be m ‘nice’ (L2(R), Lipschitz, etc.) real functions. Let

dXt =
m∑
i=1

gi(Xt)dW
(i)
t

Then, we can always find a single one-dimensional Wiener process Wt (on the same probability
space) such that

dXt =

(
m∑
i=1

g2i (Xt)

)1/2

dWt
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Proof. It suffices to prove the m = 2 case.
Let dXt = g1(Xt)dW

(1)
t + g2(Xt)dW

(2)
t . Let us consider the two-dimensional process Wt =

[W
(1)
t ,W

(2)
t ]T on R2. Let us define a function G : R → R2 as

G(x) =
1√

g21(x) + g22(x)

g1(x)
g2(x)

 (E.1)

Now, by definition, we have

t∫
0

G(Xs) · dWs =

t∫
0

g1(Xs)√
g21(Xs) + g22(Xs)

dW
(1)
t +

t∫
0

g2(Xs)√
g21(Xs) + g22(Xs)

dW (2)
s (E.2)

By a simple corollary of the Itô isometry, we can calculate the quadratic variation of
∫
G ·dW

as

〈∫
G(Xs) · dWs

〉
t

=

t∫
0

∥G(Xs)∥2 d⟨W⟩s =
t∫

0

1

g21 + g22
· (g21 + g22)ds =

t∫
0

ds = t (E.3)

Further, since
∫
G·dW is a stochastic integral, the process Mt =

∫ t

0
G(Xs)·dWs is guaranteed

to be a continuous square-integrable martingale. But, by Lévy’s characterization of Brownian
motion, the only continuous martingale Mt that satisfies ⟨M⟩t = t is the Brownian motion.
Thus, from equation (E.3), we are led to conclude that there is a one-dimensional Wiener
process Wt on the same probability space such that we can write

G(Xt) · dWt = dWt (E.4)

We can now use equation (E.2) on the LHS of equation (E.4) to write

g1(Xt)√
g21(Xt) + g22(Xt)

dW
(1)
t +

g2(Xt)√
g21(Xt) + g22(Xt)

dW
(2)
t = dWt (E.5)

By definition of our original process Xt, we can now conclude that

dXt =
√
g21(Xt) + g22(Xt)dWt (E.6)
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thus completing the proof.

Using this lemma, we can now calculate the stochastic integral terms of our equations.
For equation (5.1), the stochastic analog of the replicator-mutator equation, we can use this
lemma and the functional form A+

i = xiτi(x) + µQi(x) to find that the noise term can be
written as a stochastic integral against a single Wiener process Wt as

1√
KNK(t)

[
pi(1− pi)τi + p2i

(∑
j ̸=i

τjpj

)
+ µ

{
(1− pi)

2Qi(p) + p2i
∑
j ̸=i

Qj(p)

}]1/2
dWt

(E.7)
For equation (5.2), the stochastic analog of the Price equation, we have:

dWf =
m∑
i=1

(
fi − f

)√
A+

i dW
(i)
t =

(
m∑
i=1

(
fi − f

)2
A+

i

)1/2

dWt (E.8)

where dWt is now a single one-dimensional Wiener process. This is precisely the term
calculated in equation (C.13) (barring the 1/KN2

K pre-factor), and thus the stochastic term
for the mean value is given by:

dWf =

√√√√NK(t)

(
Cov(τ,

(
f − f

)2
) + τσ2

f + µ
m∑
i=1

(
fi − f

)2
Qi(p)

)
dWt (E.9)

Similarly, for the variance equation (5.9), we can use our lemma to write

dWσ2
f
=

m∑
i=1

(
fi − f

)2√
A+

i dW
(i)
t =

(
m∑
i=1

(
fi − f

)4
A+

i

)1/2

dWt (E.10)

where dWt is now a single one-dimensional Wiener process. A calculation exactly analogous
to that done in obtaining (C.13) reveals that this term can be written as

dWσ2
f
=

√√√√NK(t)

(
Cov(τ,

(
f − f

)4
) + τ(σ2

f )
2 + µ

m∑
i=1

(
fi − f

)4
Qi(p)

)
dWt (E.11)
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Appendix F

Behavior of our fundamental equation for
trait frequencies at boundaries

We begin with the stochastic generalization of the replicator-mutator equation, equation (5.1).
Since the pis describe frequencies, if the system is well-behaved, then if it begins in [0, 1]m,
it should remain inside [0, 1]m for all time. We are thus interested in the behavior of this
equation at the boundaries of [0, 1]m. Using the representation of the noise-term presented in
equation (E.7), we can rewrite equation (5.1) as

dpi(t) =

[
(wi(x)− w)pi + µ

{
Qi(p)− pi

(
m∑
j=1

Qj(p)

)}]
dt

− 1

K

1

NK(t)

[
(τi(x)− τ)pi + µ

{
Qi(p)− pi

(
m∑
j=1

Qj(p)

)}]
dt

+
1√

KNK(t)

[
pi(1− pi)τi + p2i

(∑
j ̸=i

τjpj

)
+ µ

{
(1− pi)

2Qi(p) + p2i
∑
j ̸=i

Qj(p)

}]1/2
dWt

(F.1)
Now, if we let pi → 0 to look at the behavior at the 0 boundary, we are left with

lim
pi→0

dpi(t) = lim
pi→0

(
µ

[(
1− 1

KNK

)
Qi(p)

]
dt+

1√
KNK

√
µQi(p)dWt

)
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Since µ ≥ 0, Qi ≥ 0, and KNK ≥ 1 by definition, all terms on the RHS are non-negative.
The strongest effect is from the dt term due to the 1/

√
K pre-factor in the stochastic term,

meaning that dpi will almost certainly be ≥ 0. Thus, we can conclude that

lim
pi→0

dpi
dt

≥ 0 a.s.

where the inequality is due to mutational effects. Further, now letting µ→ 0 (no mutation in
the system) or Qi(p) → 0 (No mutations of individuals of other types into type i individuals),
both terms entirely vanish, and we get

lim
pi→0
Qi→0

dpi
dt

= 0

which is what one would expect if things are working correctly.

We can also look at the scenario pi → 1. Note that as pi → 1, we must obviously have
pj → 0 ∀ j ̸= i (i.e. p → ei, where ei = [0, · · · , 0, 1, 0, · · · , 0] is the ith basis vector, with 1 in
the ith entry and 0 everywhere else). This means that w → wi and τ → τi, and thus both
the selection terms in equation (F.1) vanish. We are left with

lim
pi→1

dpi(t) = −µ

[(
1− 1

KNK

)(
lim
p→ei

m∑
j ̸=i

Qj(p)

)]
dt+

1√
KNK(t)

[
µ

(
lim
p→ei

∑
j ̸=i

Qj(p)

)]1/2
dWt

Since by definition, µ ≥ 0, Qj ≥ 0, and KNK ≥ 1, we can conclude that we must have

lim
pi→1

dpi
dt

≤ 0 a.s.

which again is as expected. Note that just like before, the inequality is purely due to mutational
effects. If we now impose µ → 0 (no mutation in the system) or Qj(p) → 0 ∀ j ̸= i (No
mutations of type i individuals into individuals of other types), we will once again get

lim
pi→1

Qj→0 ∀ j ̸=i

dpi
dt

= 0

showing that our equations are always well-behaved.
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